A fixed-point theorem for planar homeomorphisms

被引:29
作者
Handel, M [1 ]
机构
[1] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
关键词
D O I
10.1016/S0040-9383(98)00001-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:235 / 264
页数:30
相关论文
共 12 条
[1]  
BROWN M, 1984, HOUSTON J MATH, V10, P35
[2]  
CASSON AJ, 1988, AUTOMORPHISMS SURFAC, DOI DOI 10.1017/CBO9780511623912
[3]   A NEW PROOF OF THE BROUWER PLANE TRANSLATION THEOREM [J].
FRANKS, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :217-226
[4]   GEODESICS ON S-2 AND PERIODIC POINTS OF ANNULUS HOMEOMORPHISMS [J].
FRANKS, J .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :403-418
[5]  
GUILLOU L, 1994, TOPOLOGY, V12, P311
[6]   PERIODIC POINT FREE HOMEOMORPHISM OF T2 [J].
HANDEL, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (02) :511-515
[7]   THE ROTATION SET OF A HOMEOMORPHISM OF THE ANNULUS IS CLOSED [J].
HANDEL, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (02) :339-349
[8]  
HANDEL M, ZERO ENTROPY SURFACE
[9]  
HANDEL M, UNPUB END PERIODIC S
[10]  
HANDEL M, 1989, ADV MATH, V56, P173