Artificial intelligence outperforms standard blood-based scores in identifying liver fibrosis patients in primary care

被引:20
作者
Blanes-Vidal, Victoria [1 ,2 ,3 ]
Lindvig, Katrine P. [4 ,5 ]
Thiele, Maja [4 ,5 ]
Nadimi, Esmaeil S. [1 ,2 ,3 ]
Krag, Aleksander [4 ,5 ]
机构
[1] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, Appl AI & Data Sci, Odense, Denmark
[2] Univ Southern Denmark, Danish Ctr Clin Artificial Intelligence CAI X, Odense, Denmark
[3] Odense Univ Hosp, Odense, Denmark
[4] Odense Univ Hosp, Dept Gastroenterol & Hepatol, Odense, Denmark
[5] Univ Southern Denmark, Dept Clin Res, Odense, Denmark
关键词
SIMPLE NONINVASIVE INDEX; PREDICT;
D O I
10.1038/s41598-022-06998-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For years, hepatologists have been seeking non-invasive methods able to detect significant liver fibrosis. However, no previous algorithm using routine blood markers has proven to be clinically appropriate in primary care. We present a novel approach based on artificial intelligence, able to predict significant liver fibrosis in low-prevalence populations using routinely available patient data. We built six ensemble learning models (LiverAID) with different complexities using a prospective screening cohort of 3352 asymptomatic subjects. 463 patients were at a significant risk that justified performing a liver biopsy. Using an unseen hold-out dataset, we conducted a head-to-head comparison with conventional methods: standard blood-based indices (FIB-4, Forns and APRI) and transient elastography (TE). LiverAID models appropriately identified patients with significant liver stiffness (> 8 kPa) (AUC of 0.86, 0.89, 0.91, 0.92, 0.92 and 0.94, and NPV >= 0.98), and had a significantly superior discriminative ability (p < 0.01) than conventional blood-based indices (AUC = 0.60-0.76). Compared to TE, LiverAID models showed a good ability to rule out significant biopsy-assessed fibrosis stages. Given the ready availability of the required data and the relatively high performance, our artificial intelligence-based models are valuable screening tools that could be used clinically for early identification of patients with asymptomatic chronic liver diseases in primary care.
引用
收藏
页数:11
相关论文
共 14 条
[1]   Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model [J].
Forns, X ;
Ampurdanès, S ;
Llovet, JM ;
Aponte, J ;
Quintó, L ;
Martínez-Bauer, E ;
Bruguera, M ;
Sánchez-Tapias, JM ;
Rodés, J .
HEPATOLOGY, 2002, 36 (04) :986-992
[2]   Direct targeting of risk factors significantly increases the detection of liver cirrhosis in primary care: a cross-sectional diagnostic study utilising transient elastography [J].
Harman, David J. ;
Ryder, Stephen D. ;
James, Martin W. ;
Jelpke, Matthew ;
Ottey, Dominic S. ;
Wilkes, Emilie A. ;
Card, Timothy R. ;
Aithal, Guruprasad P. ;
Guha, Indra Neil .
BMJ OPEN, 2015, 5 (04)
[3]   AUC-Maximizing Ensembles through Metalearning [J].
LeDell, Erin ;
van der Laan, Mark J. ;
Peterson, Maya .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01) :203-218
[4]   Complications, morbidity and mortality of nonalcoholic fatty liver disease [J].
Mantovani, Alessandro ;
Scorletti, Eleonora ;
Mosca, Antonella ;
Alisi, Anna ;
Byrne, Christopher D. ;
Targher, Giovanni .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2020, 111
[5]   Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease [J].
McPherson, Stuart ;
Stewart, Stephen F. ;
Henderson, Elsbeth ;
Burt, Alastair D. ;
Day, Christopher P. .
GUT, 2010, 59 (09) :1265-1269
[6]   Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease [J].
Papatheodoridi, Margarita ;
Hiriart, Jean Baptiste ;
Lupsor-Platon, Monica ;
Bronte, Fabrizio ;
Boursier, Jerome ;
Elshaarawy, Omar ;
Marra, Fabio ;
Thiele, Maja ;
Markakis, Georgios ;
Payance, Audrey ;
Brodkin, Edgar ;
Castera, Laurent ;
Papatheodoridis, George ;
Krag, Aleksander ;
Arena, Umberto ;
Mueller, Sebastian ;
Cales, Paul ;
Calvaruso, Vincenza ;
de Ledinghen, Victor ;
Pinzani, Massimo ;
Tsochatzis, Emmanuel A. .
JOURNAL OF HEPATOLOGY, 2021, 74 (05) :1109-1116
[7]  
Polley EC, 2010, Super learner in prediction
[8]   Transient elastography as a screening tool for liver fibrosis and cirrhosis in a community-based population aged over 45 years [J].
Roulot, Dominique ;
Costes, Jean-Luc ;
Buyck, Jean-Francois ;
Warzocha, Ursula ;
Gambier, Nicolas ;
Czernichow, Sebastien ;
Le Clesiau, Herve ;
Beaugrand, Michel .
GUT, 2011, 60 (07) :977-984
[9]   A New Model Using Routinely Available Clinical Parameters to Predict Significant Liver Fibrosis in Chronic Hepatitis B [J].
Seto, Wai-Kay ;
Lee, Chun-Fan ;
Lai, Ching-Lung ;
Ip, Philip P. C. ;
Fong, Daniel Yee-Tak ;
Fung, James ;
Wong, Danny Ka-Ho ;
Yuen, Man-Fung .
PLOS ONE, 2011, 6 (08)
[10]   Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection [J].
Sterling, Richard K. ;
Lissen, Eduardo ;
Clumeck, Nathan ;
Sola, Ricard ;
Correa, Mendes Cassia ;
Montaner, Julio ;
Sulkowski, Mark S. ;
Torriani, Francesca J. ;
Dieterich, Doug T. ;
Thomas, David L. ;
Messinger, Diethelm ;
Nelson, Mark .
HEPATOLOGY, 2006, 43 (06) :1317-1325