Salinity is a limiting factor for forage productivity in irrigated areas. The aim of this study was to evaluate the salt tolerance index (STI), the K/Na ratio, and the forage quality of several introduced cool season grass species in irrigated agriculture. Four irrigated water salinity concentrations were used (control, 4000, 8000, and 12000 ppm sodium chloride (NaCl)), and four grass cultivars belonging to three species were established under greenhouse conditions at the Qassim University Agricultural Research and Experimental Station during the 2012 and 2013 growing seasons (perennial ryegrass (Lolium perenne L., cvs. Aries and Quartet), endophyte-free tall fescue (Festuca arundinacea Schreb., cv. Fawn), and orchardgrass (Dactylis glomerata L., cv. Tekapo)). A randomized complete block design (RCBD) using three replications was used. Cultivars were evaluated based on their dry weights (g m(-2)) and forage quality. Additionally, the STI and potassium (K+) and sodium (Na+) concentrations in the studied grass cultivars were evaluated. The dry weights of the grasses decreased significantly as the salinity level of the irrigation water increased. At a salinity of 4000 ppm, the Aries perennial ryegrass had the highest dry weight at both sample cuttings. The Aries, Fawn, and Quartet grasses had the highest STI values. The percent of K+ and the K/Na ratio increased as the salinity of the irrigation water increased for the Fawn tall fescue and Quartet perennial ryegrass. In the previously cultivars, the percentage of Na+ decreased as the salinity level of the irrigation water increased, which was in contrast with the results observed for the Tekapo orchardgrass.