Scaling limit of the loop-erased random walk Green's function

被引:9
作者
Benes, Christian [1 ]
Lawler, Gregory F. [2 ]
Viklund, Fredrik [3 ,4 ]
机构
[1] CUNY Brooklyn Coll, Brooklyn, NY 11210 USA
[2] Univ Chicago, Chicago, IL 60637 USA
[3] KTH Royal Inst Technol, Stockholm, Sweden
[4] Uppsala Univ, Uppsala, Sweden
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
Loop-erased random walk; Green's function; scaling limit; loop measure; Poisson kernel; Fomin's identity; Schramm-Loewner evolution; SPANNING-TREES; PARTIAL SUMS; ISING-MODEL; APPROXIMATION;
D O I
10.1007/s00440-015-0655-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider loop-erased random walk (LERW) running between two boundary points of a square grid approximation of a planar simply connected domain. The LERW Green's function is the probability that the LERW passes through a given edge in the domain. We prove that this probability, multiplied by the inverse mesh size to the power 3/4, converges in the lattice size scaling limit to (a constant times) an explicit conformally covariant quantity which coincides with the Green's function. The proof does not use SLE techniques and is based on a combinatorial identity which reduces the problem to obtaining sharp asymptotics for two quantities: the loop measure of random walk loops of odd winding number about a branch point near the marked edge and a "spinor" observable for random walk started from one of the vertices of the marked edge.
引用
收藏
页码:271 / 319
页数:49
相关论文
共 25 条
  • [1] EXPONENTIAL TAIL BOUNDS FOR LOOP-ERASED RANDOM WALK IN TWO DIMENSIONS
    Barlow, Martin T.
    Masson, Robert
    [J]. ANNALS OF PROBABILITY, 2010, 38 (06) : 2379 - 2417
  • [2] Benes C., 2006, ARXIVMATH0611127
  • [3] On the Rate of Convergence of Loop-Erased Random Walk to SLE2
    Benes, Christian
    Viklund, Fredrik Johansson
    Kozdron, Michael J.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (02) : 307 - 354
  • [4] Conformal invariance of spin correlations in the planar Ising model
    Chelkak, Dmitry
    Hongler, Clement
    Izyurov, Konstantin
    [J]. ANNALS OF MATHEMATICS, 2015, 181 (03) : 1087 - 1138
  • [5] Holomorphic Spinor Observables in the Critical Ising Model
    Chelkak, Dmitry
    Izyurov, Konstantin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) : 303 - 332
  • [6] Loop-erased walks and total positivity
    Fomin, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) : 3563 - 3583
  • [7] PIVOTAL, CLUSTER, AND INTERFACE MEASURES FOR CRITICAL PLANAR PERCOLATION
    Garban, Christophe
    Pete, Gabor
    Schramm, Oded
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (04) : 939 - 1024
  • [8] The energy density in the planar Ising model
    Hongler, Clement
    Smirnov, Stanislav
    [J]. ACTA MATHEMATICA, 2013, 211 (02) : 191 - 225
  • [9] The asymptotic determinant of the discrete Laplacian
    Kenyon, R
    [J]. ACTA MATHEMATICA, 2000, 185 (02) : 239 - 286
  • [10] Kenyon RW, 2015, J AM MATH SOC, V28, P985