Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations

被引:23
作者
Masmoudi, N [1 ]
Nakanishi, K
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1007/s00220-003-0951-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove uniqueness of solutions to the Maxwell-Dirac system in the energy space, namely C(-T, T; H-1/2 x (H) over dot(1)). We also give a proof for uniqueness of finite energy solutions to the Maxwell-Klein-Gordon equations, which is simpler than that given in [16].
引用
收藏
页码:123 / 136
页数:14
相关论文
共 16 条
[1]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[2]   Local existence for the Maxwell-Dirac equations in three space dimensions [J].
Bournaveas, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (5-6) :693-720
[3]   Local existence of energy class solutions for the Dirac-Klein-Gordon equations [J].
Bournaveas, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1167-1193
[4]   On the local existence for the Maxwell-Klein-Gordon system in R3+1 [J].
Cuccagna, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) :851-867
[5]  
Dirac P.A.M., 1958, The Principles of Quantum Mechanics
[6]   Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations [J].
Esteban, MJ ;
Georgiev, V ;
Sere, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) :265-281
[7]  
Furioli G, 2000, REV MAT IBEROAM, V16, P605
[8]   ON THE MAXWELL-KLEIN-GORDON EQUATION WITH FINITE-ENERGY [J].
KLAINERMAN, S ;
MACHEDON, M .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (01) :19-44
[9]   SPACE-TIME ESTIMATES FOR NULL FORMS AND THE LOCAL EXISTENCE THEOREM [J].
KLAINERMAN, S ;
MACHEDON, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1221-1268
[10]  
Klainerman S., 1994, INT MATH RES NOTICES, Vno. 9, P383, DOI [DOI 10.1155/S1073792894000425, 10.1155/S1073792894000425]