Improvement on the bound of Hermite matrix polynomials

被引:4
作者
Defez, Emilio [1 ]
Tung, Michael M. [1 ]
Sastre, Jorge [2 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
[2] Univ Politecn Valencia, Inst Telecomunicac & Aplicac Multimedia, Valencia 46022, Spain
关键词
Hermite matrix polynomials; Riemann-Lebesgue matrix lemma; 2-Norm bound; COMPUTE;
D O I
10.1016/j.laa.2010.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an improved bound on the 2-norm of Hermite matrix polynomials. As a consequence, this estimate enables us to present and prove a matrix version of the Riemann-Lebesgue lemma for Fourier transforms. Finally, our theoretical results are used to develop a novel procedure for the computation of matrix exponentials with a priori bounds. A numerical example for a test matrix is provided. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1910 / 1919
页数:10
相关论文
共 14 条
[1]   A new extension of Hermite matrix polynomials and its applications [J].
Batahan, Raed S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) :82-92
[2]  
Defez E, 2000, UTILITAS MATHEMATICA, V57, P129
[3]   Bounding Hermite matrix polynomials [J].
Defez, E ;
Hervás, A ;
Jódar, L .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (1-2) :117-125
[4]   Some applications of the Hermite matrix polynomials series expansions [J].
Defez, E ;
Jodar, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :105-117
[5]  
Dunford N., 1957, LINEAR OPERATORS, V1
[6]  
FOLLAND GB, 1992, COLE MATH SERIES
[7]  
Golub GH., 1989, MATRIX COMPUTATIONS, DOI DOI 10.56021/9781421407944
[8]  
Jodar L., 1996, Approx. Theory. Appl., V12, P20
[9]   Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later [J].
Moler, C ;
Van Loan, C .
SIAM REVIEW, 2003, 45 (01) :3-49
[10]   19 DUBIOUS WAYS TO COMPUTE EXPONENTIAL OF A MATRIX [J].
MOLER, C ;
VANLOAN, C .
SIAM REVIEW, 1978, 20 (04) :801-836