Development of genome-wide SNP assays for rice

被引:131
|
作者
McCouch, Susan R. [1 ]
Zhao, Keyan [2 ,3 ]
Wright, Mark [1 ,2 ]
Tung, Chih-Wei [1 ]
Ebana, Kaworu [4 ]
Thomson, Michael [5 ]
Reynolds, Andy [2 ]
Wang, Diane [1 ]
DeClerck, Genevieve [1 ]
Ali, Md Liakat [6 ]
McClung, Anna [7 ]
Eizenga, Georgia [7 ]
Bustamante, Carlos [2 ,3 ]
机构
[1] Cornell Univ, Dept Plant Breeding & Genet, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY USA
[3] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[4] Natl Inst Agrobiol Sci, Tsukuba, Ibaraki 3058602, Japan
[5] Int Rice Res Inst, Los Banos, Laguna, Philippines
[6] Univ Arkansas, Rice Res & Extens Ctr, Stuttgart, AR USA
[7] USDA ARS, Dale Bumpers Natl Rice Res Ctr, Stuttgart, AR USA
关键词
single nucleotide polymorphism (SNP); rice (Oryza sativa L.); genotyping assay; next-generation sequencing; genetic variation; germplasm diversity; plant improvement; SINGLE-NUCLEOTIDE POLYMORPHISMS; CONFERS SUBMERGENCE TOLERANCE; MARKER-ASSISTED SELECTION; QUANTITATIVE TRAIT LOCUS; LINKAGE DISEQUILIBRIUM; MOLECULAR MARKERS; GENETIC-STRUCTURE; DRAFT SEQUENCE; ORYZA; DNA;
D O I
10.1270/jsbbs.60.524
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation in eukaryotic genomes. SNPs may be functionally responsible for specific traits or phenotypes, or they may be informative for tracing the evolutionary history of a species or the pedigree of a variety. As genetic markers, SNPs are rapidly replacing simple sequence repeats (SSRs) because they are more abundant, stable, amenable to automation, efficient, and increasingly cost-effective. The integration of high throughput SNP genotyping capability promises to accelerate genetic gain in a breeding program, but also imposes a series of economic, organizational and technical hurdles. To begin to address these challenges, SNP-based resources are being developed and made publicly available for broad application in rice research. These resources include large SNP datasets, tools for identifying informative SNPs for targeted applications, and a suite of custom-designed SNP assays for use in marker-assisted and genomic selection, association and QTL mapping, positional cloning, pedigree analysis, variety identification and seed purity testing. SNP resources also make it possible for breeders to more efficiently evaluate and utilize the wealth of natural variation that exists in both wild and cultivated germplasm with the aim of improving the productivity and sustainability of agriculture.
引用
收藏
页码:524 / 535
页数:12
相关论文
共 50 条
  • [31] Genome-Wide Development of Polymorphic SNP Markers and Evaluation of Genetic Diversity of Litchi (Litchi chinensis Sonn.)
    Liu, Wei
    Xiao, Zhidan
    Jiang, Nonghui
    Fan, Chao
    Xiang, Xu
    PLANTS-BASEL, 2023, 12 (23):
  • [32] Sequencing-based genome-wide association study in rice
    Han, Bin
    Huang, Xuehui
    CURRENT OPINION IN PLANT BIOLOGY, 2013, 16 (02) : 133 - 138
  • [33] A high-throughput SNP typing system for genome-wide association studies
    Ohnishi, Y
    Tanaka, T
    Ozaki, K
    Yamada, R
    Suzuki, H
    Nakamura, Y
    JOURNAL OF HUMAN GENETICS, 2001, 46 (08) : 471 - 477
  • [34] Inferring the History of Population Size Change from Genome-Wide SNP Data
    Theunert, Christoph
    Tang, Kun
    Lachmann, Michael
    Hu, Sile
    Stoneking, Mark
    MOLECULAR BIOLOGY AND EVOLUTION, 2012, 29 (12) : 3653 - 3667
  • [35] Parentage analysis using genome-wide high-density SNP microarray
    Long, Ju
    GENE, 2021, 785
  • [36] Power to detect risk Alleles using genome-wide tag SNP panels
    Eberle, Michael A.
    Ng, Pauline C.
    Kuhn, Kenneth
    Zhou, Lixin
    Peiffer, Daniel A.
    Galver, Luana
    Viaud-Martinez, Karine A.
    Lawley, Cynthia Taylor
    Gunderson, Kevin L.
    Shen, Richard
    Murray, Sarah S.
    PLOS GENETICS, 2007, 3 (10) : 1827 - 1837
  • [37] Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data
    Petersen, Jessica L.
    Mickelson, James R.
    Cothran, E. Gus
    Andersson, Lisa S.
    Axelsson, Jeanette
    Bailey, Ernie
    Bannasch, Danika
    Binns, Matthew M.
    Borges, Alexandre S.
    Brama, Pieter
    Machado, Artur da Camara
    Distl, Ottmar
    Felicetti, Michela
    Fox-Clipsham, Laura
    Graves, Kathryn T.
    Guerin, Gerard
    Haase, Bianca
    Hasegawa, Telhisa
    Hemmann, Karin
    Hill, Emmeline W.
    Leeb, Tosso
    Lindgren, Gabriella
    Lohi, Hannes
    Lopes, Maria Susana
    McGivney, Beatrice A.
    Mikko, Sofia
    Orr, Nicholas
    Penedo, M. Cecilia T.
    Piercy, Richard J.
    Raekallio, Marja
    Rieder, Stefan
    Roed, Knut H.
    Silvestrelli, Maurizio
    Swinburne, June
    Tozaki, Teruaki
    Vaudin, Mark
    Wade, Claire M.
    McCue, Molly E.
    PLOS ONE, 2013, 8 (01):
  • [38] Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato
    Kim, Ji-Eun
    Oh, Sang-Keun
    Lee, Jeong-Hee
    Lee, Bo-Mi
    Jo, Sung-Hwan
    MOLECULES AND CELLS, 2014, 37 (01) : 36 - 42
  • [39] Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation
    Chen, Jieming
    Zheng, Houfeng
    Bei, Jin-Xin
    Sun, Liangdan
    Jia, Wei-hua
    Li, Tao
    Zhang, Furen
    Seielstad, Mark
    Zeng, Yi-Xin
    Zhang, Xuejun
    Liu, Jianjun
    AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 85 (06) : 775 - 785
  • [40] Genetic characteristics of Karachaev sheep inferred from genome-wide SNP analysis
    Dotsev, Arsen V.
    Deniskova, Tatiana E.
    Petrov, Sergey N.
    Reyer, Henry
    Wimmers, Klaus
    Brem, Gottfried
    Zinovieva, Natalia A.
    JOURNAL OF ANIMAL SCIENCE, 2021, 99 : 243 - 243