A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data (vol 11, pg 3453, 2019)

被引:0
作者
Pourshamsi, Maryam [1 ]
Garcia, Mariano [2 ]
Lavalle, Marco [3 ]
Balzter, Heiko [4 ,5 ]
机构
[1] Univ Leicester, Ctr Landscape & Climate Res, Sch Geog Geol & Environm, Leicester LE1 7RH, Leics, England
[2] Univ Alcala, Dept Geol Geog & Environm, Madrid 28801, Spain
[3] CALTECH, Jet Prop Lab, Radar Sci & Engn Grp, Pasadena, CA 91125 USA
[4] Univ Leicester, Ctr Landscape & Climate Res, Sch Geog Geol & Environm, Leicester LE1 7RH, Leics, England
[5] Univ Leicester, Natl Ctr Earth Observat, Leicester LE1 7RH, Leics, England
关键词
Machine learning; Synthetic aperture radar; Lidar radar;
D O I
10.1109/JSTARS.2020.2968779
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Presents corrections to the above mentioned paper.
引用
收藏
页码:566 / 566
页数:1
相关论文
共 1 条
  • [1] POURSHAMSI M, 2019, IEEE J-STARS, V11, P3453