Site-Specific Load-Induced Expansion of Sca-1+Prrx1+ and Sca-1-Prrx1+ Cells in Adult Mouse Long Bone Is Attenuated With Age

被引:13
作者
Cabahug-Zuckerman, Pamela [1 ,2 ,3 ]
Liu, Chao [1 ,2 ,3 ]
Cai, Cinyee [1 ,2 ]
Mahaffey, Ian [4 ]
Norman, Stephanie C. [4 ]
Cole, Whitney [4 ]
Castillo, Alesha B. [1 ,2 ,3 ]
机构
[1] NYU, NYU Langone Hlth, Dept Orthopaed Surg, New York, NY USA
[2] NYU, Tandon Sch Engn, Dept Biomed Engn, New York, NY USA
[3] Vet Affairs New York Harbor Healthcare Syst, Rehabil Res & Dev, New York, NY USA
[4] Vet Affairs Palo Alto Healthcare Syst, Rehabil Res & Dev, Palo Alto, CA USA
关键词
LOAD-INDUCED BONE FORMATION; AGING; OSTEOGENESIS; SKELETAL STEM CELL; PRRX1;
D O I
10.1002/jbm4.10199
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aging is associated with significant bone loss and increased fracture risk, which has been attributed to a diminished response to anabolic mechanical loading. In adults, skeletal progenitors proliferate and differentiate into bone-forming osteoblasts in response to increasing mechanical stimuli, though the effects of aging on this response are not well-understood. Here we show that both adult and aged mice exhibit load-induced periosteal bone formation, though the response is significantly attenuated with age. We also show that the acute response of adult bone to loading involves expansion of Sca-1(+)Prrx1(+) and Sca-1-Prrx1(+) cells in the periosteum. On the endosteal surface, loading enhances proliferation of both these cell populations, though the response is delayed by 2 days relative to the periosteal surface. In contrast to the periosteum and endosteum, the marrow does not exhibit increased proliferation of Sca-1(+)Prrx1(+) cells, but only of Sca-1-Prrx1(+) cells, underscoring fundamental differences in how the stem cell niche in distinct bone envelopes respond to mechanical stimuli. Notably, the proliferative response to loading is absent in aged bone even though there are similar baseline numbers of Prrx1(+) cells in the periosteum and endosteum, suggesting that the proliferative capacity of progenitors is attenuated with age, and proliferation of the Sca-1(+)Prrx1(+) population is critical for loadinduced periosteal bone formation. These findings provide a basis for the development of novel therapeutics targeting these cell populations to enhance osteogenesis for overcoming age-related bone loss. (C) 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
引用
收藏
页数:15
相关论文
共 76 条
[1]   Periosteum: biology, regulation, and response to osteoporosis therapies [J].
Allen, MR ;
Hock, JM ;
Burr, DB .
BONE, 2004, 35 (05) :1003-1012
[2]   Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration [J].
Ambrosi, Thomas H. ;
Scialdone, Antonio ;
Graja, Antonia ;
Gohlke, Sabrina ;
Jank, Anne-Marie ;
Bocian, Carla ;
Woelk, Lena ;
Fan, Hua ;
Logan, Darren W. ;
Schuermann, Annette ;
Saraiva, Luis R. ;
Schulz, Tim J. .
CELL STEM CELL, 2017, 20 (06) :771-+
[3]   Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise [J].
Bassey, EJ ;
Rothwell, MC ;
Littlewood, JJ ;
Pye, DW .
JOURNAL OF BONE AND MINERAL RESEARCH, 1998, 13 (12) :1805-1813
[4]   Proliferation, differentiation and self-renewal of osteoprogenitors in vertebral cell populations from aged and young female rats [J].
Bellows, CG ;
Pei, W ;
Jia, Y ;
Heersche, JNM .
MECHANISMS OF AGEING AND DEVELOPMENT, 2003, 124 (06) :747-757
[5]   The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical [J].
Birkhold, Annette I. ;
Razi, Hajar ;
Duda, Georg N. ;
Weinkamer, Richard ;
Checa, Sara ;
Willie, Bettina M. .
SCIENTIFIC REPORTS, 2016, 6
[6]   The influence of age on adaptive bone formation and bone resorption [J].
Birkhold, Annette I. ;
Razi, Hajar ;
Duda, Georg N. ;
Weinkamer, Richard ;
Checa, Sara ;
Willie, Bettina M. .
BIOMATERIALS, 2014, 35 (34) :9290-9301
[7]   Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry [J].
Birkhold, Annette I. ;
Razi, Hajar ;
Duda, Georg N. ;
Weinkamer, Richard ;
Checa, Sara ;
Willie, Bettina M. .
BONE, 2014, 66 :15-25
[8]   Time course of osteoblast appearance after in vivo mechanical loading [J].
Boppart, MD ;
Kimmel, DB ;
Yee, JA ;
Cullen, DM .
BONE, 1998, 23 (05) :409-415
[9]   Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography [J].
Bouxsein, Mary L. ;
Boyd, Stephen K. ;
Christiansen, Blaine A. ;
Guldberg, Robert E. ;
Jepsen, Karl J. ;
Mueller, Ralph .
JOURNAL OF BONE AND MINERAL RESEARCH, 2010, 25 (07) :1468-1486
[10]   Aged Mice Have Enhanced Endocortical Response and Normal Periosteal Response Compared With Young-Adult Mice Following 1 Week of Axial Tibial Compression [J].
Brodt, Michael D. ;
Silva, Matthew J. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2010, 25 (09) :2006-2015