Consta-Abelian polyadic codes

被引:12
作者
Lim, CJ [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
关键词
consta-Abelian codes; constacyclic codes; minimum weight; m-splitting; polyadic codes; self-dual codes; twisted discrete Fourier transform;
D O I
10.1109/TIT.2005.847734
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, the class of polyadic codes is generalized to the class of consta-Abelian polyadic codes, which, in particular, includes the class of constacyclic polyadic codes. Properties such as the equivalence of polyadic codes and the mth-root lower bound for the minimum weight of a subcode of certain types of polyadic codes are preserved in the consta-Abelian case. Sufficient conditions for the existence of this class of codes are established. For the special case of constacyclic codes, the characterization of negacyclic self-dual codes of length coprime to the characteristic of the field in terms of negacyclic duadic codes is also given.
引用
收藏
页码:2198 / 2206
页数:9
相关论文
共 17 条
[1]  
Berlekamp E. R., 1968, ALGEBRAIC CODING THE
[2]  
BLACKFORD JT, UNPUB TRANSFORM APPR
[3]  
BROUWER AE, BOUNDS MINIMUM DISTA
[4]   POLYADIC CODES [J].
BRUALDI, RA ;
PLESS, VS .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (1-2) :3-17
[5]  
Curtis C. W., 1962, Representation theory of finite groups and associative algebras, VXI
[6]   Split group codes [J].
Ding, CS ;
Kohel, DR ;
Ling, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :485-495
[7]   Cyclotomy and duadic codes of prime lengths [J].
Ding, CS ;
Pless, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :453-466
[8]  
Hughes BL, 2000, IEEE T INFORM THEORY, V46, P2567, DOI [10.1109/18.887864, 10.1109/18.825841]
[9]   DUADIC CODES [J].
LEON, JS ;
MASLEY, JM ;
PLESS, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (05) :709-714
[10]   Polyadic codes revisited [J].
Ling, S ;
Xing, CP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (01) :200-207