2-distance choice number of planar graphs with maximal degree no more than 4

被引:0
作者
Zhou, Wenjuan [1 ]
Sun, Lei [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; 2-distance k-choosable; girth; maximum degree;
D O I
10.1142/S1793830921500518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Regarding the 2-distance coloring of planar graphs, in 1977, Wegner conjectured that for a graph G: (1) chi(2)(G) <= 7 if Delta(G) = 3. (2) chi(2)(G) <= Delta(G) + 5 if 4 <= Delta(G) <= 7. (3) chi(2)(G) <= L left perpendicular3/2 Delta(G)right perpendicular + 1 if Delta(G) >= 8. In this paper, we proved that for every planar graph with maximum degree Delta(G) <= 4: (1) chi(l)(2)(G) <= 10 if g(G) >= 6. (2) chi(l)(2)(G) <= 7 if g(G) >= 10.
引用
收藏
页数:7
相关论文
共 10 条
  • [1] Graphs with maximum degree Δ ≥ 17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable
    Bonamy, Marthe
    Leveque, Benjamin
    Pinlou, Alexandre
    [J]. DISCRETE MATHEMATICS, 2014, 317 : 19 - 32
  • [2] Bondy J.A., 2007, Graph Theory
  • [3] Borodin O.V., 2009, DISCRETE MATH, V309, P23
  • [4] List 2-distance (Δ+2)-coloring of planar graphs with girth six
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1257 - 1262
  • [5] Dvorak Z., 2005, DISCRETE APPL MATH, V43, P976
  • [6] Havet F., 2007, Electron. Notes Discrete Math., V29, P515
  • [7] A bound on the chromatic number of the square of a planar graph
    Molloy, M
    Salavatipour, MR
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) : 189 - 213
  • [8] Wegner G., 1977, Graphs with given diameter and a coloring problem
  • [9] Yan X.Y, 2014, J ZHEJIANG NORMAL U, V37
  • [10] Minimum 2-distance coloring of planar graphs and channel assignment
    Zhu, Junlei
    Bu, Yuehua
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 55 - 64