Open-Loop Position Control in Collaborative, Modular Variable-Stiffness-Link (VSL) Robots

被引:26
作者
Gandarias, Juan M. [1 ]
Wang, Yongjing [2 ]
Stilli, Agostino [2 ]
Garcia-Cerezo, Alfonso J. [1 ]
Gomez-de-Gabriel, Jesus M. [1 ]
Wurdemann, Helge A. [3 ]
机构
[1] Univ Malaga, Syst Engn & Automat Dept, Malaga 29016, Spain
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
[3] UCL, Dept Mech Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Modeling; control; and learning for soft robots; soft robot materials and design; deep learning in robotics and automation; LEARNING-BASED CONTROL; SAFE;
D O I
10.1109/LRA.2020.2969943
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Collaborative robots open up new avenues in the field of industrial robotics and physical Human-Robot Interaction (pHRI) as they are suitable to work in close approximation with humans. The integration and control of variable stiffness elements allow inherently safe interaction: Apart from notable work on Variable Stiffness Actuators, the concept of Variable-Stiffness-Link (VSL) manipulators promises safety improvements in cases of unintentional physical collision. However, position control of these type of robotic manipulators is challenging for critical task-oriented motions. In this letter, we propose a hybrid, learning based kinematic modelling approach to improve the performance of traditional open-loop position controllers for a modular, collaborative VSL robot. We show that our approach improves the performance of traditional open-loop position controllers for robots with VSL and compensates for position errors, in particular, for lower stiffness values inside the links: Using our upgraded and modular robot, two experiments have been carried out to evaluate the behaviour of the robot during task-oriented motions. Results show that traditional model-based kinematics are not able to accurately control the position of the end-effector: the position error increases with higher loads and lower pressures inside the VSLs. On the other hand, we demonstrate that, using our approach, the VSL robot can outperform the position control compared to a robotic manipulator with 3D printed rigid links.
引用
收藏
页码:1772 / 1779
页数:8
相关论文
共 44 条
[1]   Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery [J].
Abidi, Haider ;
Gerboni, Giada ;
Brancadoro, Margherita ;
Fras, Jan ;
Diodato, Alessandro ;
Cianchetti, Matteo ;
Wurdemann, Helge ;
Althoefer, Kaspar ;
Menciassi, Arianna .
INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2018, 14 (01)
[2]   Total mesorectal excision using a soft and flexible robotic arm: a feasibility study in cadaver models [J].
Arezzo, Alberto ;
Mintz, Yoav ;
Allaix, Marco Ettore ;
Arolfo, Simone ;
Bonino, Marco ;
Gerboni, Giada ;
Brancadoro, Margherita ;
Cianchetti, Matteo ;
Menciassi, Arianna ;
Wurdemann, Helge ;
Noh, Yohan ;
Althoefer, Kaspar ;
Fras, Jan ;
Glowka, Jakob ;
Nawrat, Zbigniew ;
Cassidy, Gavin ;
Walker, Rich ;
Morino, Mario .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2017, 31 (01) :264-273
[3]  
Ataka Ahmad, 2019, Towards Autonomous Robotic Systems. 20th Annual Conference, TAROS 2019. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11649), P52, DOI 10.1007/978-3-030-23807-0_5
[4]   Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies [J].
Calinon, Sylvain ;
Sardellitti, Irene ;
Caldwell, Darwin G. .
IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, :249-254
[5]   An atlas of physical human-robot interaction [J].
De Santis, Agostino ;
Siciliano, Bruno ;
De Luca, Alessandro ;
Bicchi, Antonio .
MECHANISM AND MACHINE THEORY, 2008, 43 (03) :253-270
[6]  
Faragasso A, 2014, IEEE ENG MED BIO, P6517, DOI 10.1109/EMBC.2014.6945121
[7]  
Fras J, 2017, IEEE INT C INT ROBOT, P5610, DOI 10.1109/IROS.2017.8206448
[8]  
Gandarias JM, 2019, IEEE INT C INT ROBOT, P5937, DOI [10.1109/iros40897.2019.8967953, 10.1109/IROS40897.2019.8967953]
[9]  
Gilbert HB, 2019, 2019 2ND IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT 2019), P711, DOI [10.1109/ROBOSOFT.2019.8722721, 10.1109/robosoft.2019.8722721]
[10]  
Gillespie MT, 2016, IEEE INT CONF ROBOT, P1095, DOI 10.1109/ICRA.2016.7487240