Boundary Continuity of Nonparametric Prescribed Mean Curvature Surfaces

被引:4
作者
Entekhabi, Mozhgan Nora [1 ]
Lancaster, Kirk E. [1 ]
机构
[1] Florida A&M Univ, Dept Math, Tallahassee, FL 32307 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2020年 / 24卷 / 02期
关键词
prescribed mean curvature; Dirichlet problem; boundary continuity; DIRICHLET PROBLEM; RADIAL LIMITS; EXISTENCE; EQUATIONS; BEHAVIOR;
D O I
10.11650/tjm/190504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the boundary behavior of variational solutions of Dirichlet problems for prescribed mean curvature equations at smooth boundary points where certain boundary curvature conditions are satisfied (which preclude the existence of local barrier functions). We prove that if the Dirichlet boundary data phi is continuous at such a point (and possibly nowhere else), then the solution of the variational problem is continuous at this point.
引用
收藏
页码:483 / 499
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1986, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1989, LECT MINIMAL SURFACE
[3]   On the Dirichlet problem for the prescribed mean curvature equation over general domains [J].
Bergner, Matthias .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (03) :335-343
[4]   C 1,α Theory for the Prescribed Mean Curvature Equation with Dirichlet Data [J].
Bourni, Theodora .
JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (04) :982-1035
[5]   CAPILLARY FREE SURFACES IN ABSENCE OF GRAVITY [J].
CONCUS, P ;
FINN, R .
ACTA MATHEMATICA, 1974, 132 (3-4) :177-198
[6]  
COURANT R, 1950, DIRICHLETS PRINCIPLE
[7]   BERNSTEIN FUNCTIONS AND THE DIRICHLET PROBLEM [J].
ELCRAT, AR ;
LANCASTER, KE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1055-1068
[8]   BOUNDARY-BEHAVIOR OF A NONPARAMETRIC SURFACE OF PRESCRIBED MEAN-CURVATURE NEAR A REENTRANT CORNER [J].
ELCRAT, AR ;
LANCASTER, KE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (02) :645-650
[9]   RADIAL LIMITS OF BOUNDED NONPARAMETRIC PRESCRIBED MEAN CURVATURE SURFACES [J].
Entekhabi, Mozhgan ;
Lancaster, Kirk E. .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 283 (02) :341-351
[10]  
FINN R, 1988, P LOND MATH SOC, V57, P542