HomoFRET Fluorescence Anisotropy Imaging as a Tool to Study Molecular Self-Assembly in Live Cells

被引:79
作者
Chan, Fiona T. S. [1 ]
Kaminski, Clemens F. [1 ,2 ]
Schierle, Gabriele S. Kaminski [1 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England
[2] Univ Erlangen Nurnberg, D-91052 Erlangen, Germany
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
aggregation; anisotropy imaging; fluorescence; FRET; microscopy; PROTEIN CLUSTER SIZES; GPI-ANCHORED PROTEINS; LIVING CELLS; ENERGY-TRANSFER; AMYLOID FORMATION; FRET MICROSCOPY; LIPID RAFTS; POLARIZATION; SPECTROSCOPY; SCATTERING;
D O I
10.1002/cphc.201000833
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular self-assembly is a defining feature of numerous biological functions and dysfunctions, ranging from basic cell signalling to diseases mediated by protein aggregation. There is current demand for novel experimental methods to study molecular self-assembly in live cells, and thereby in its physiological context. Forster resonance energy transfer ( FRET) between fluorophores of a single type, known as homoFRET, permits noninvasive detection and quantification of molecular clusters in live cells. It can thus provide powerful insights into the molecular physiology of living systems and disease. HomoFRET is detected by measuring the loss of fluorescence anisotropy upon excitation with polarised light. This article reviews recent key developments in homoFRET fluorescence anisotropy imaging for the detection and quantification of molecular self- assembly reactions in biological systems. A summary is given of the current state- of- the- art and case studies are presented of successful implementations, highlighting technical aspects which have to be mastered to bridge the gap between proofof- concept experiments and biological discoveries.
引用
收藏
页码:500 / 509
页数:10
相关论文
共 62 条
[1]   CARBOCYANINE DYE ORIENTATION IN RED-CELL MEMBRANE STUDIED BY MICROSCOPIC FLUORESCENCE POLARIZATION [J].
AXELROD, D .
BIOPHYSICAL JOURNAL, 1979, 26 (03) :557-573
[2]   Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy [J].
Bader, Arjen N. ;
Hofman, Erik G. ;
Henegouwen, Paul M. P. van Bergen en ;
Gerritsen, Hans C. .
OPTICS EXPRESS, 2007, 15 (11) :6934-6945
[3]   Homo-FRET Imaging Enables Quantification of Protein Cluster Sizes with Subcellular Resolution [J].
Bader, Arjen N. ;
Hofman, Erik G. ;
Voortman, Jarno ;
Henegouwen, Paul M. P. van Bergen En ;
Gerritsen, Hans C. .
BIOPHYSICAL JOURNAL, 2009, 97 (09) :2613-2622
[4]   Confocal fluorescence spectroscopy and anisotropy imaging system [J].
Bigelow, CE ;
Conover, DL ;
Foster, TH .
OPTICS LETTERS, 2003, 28 (09) :695-697
[5]   Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization [J].
Bigelow, Chad E. ;
Foster, Thomas H. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (11) :2932-2943
[6]   Structure of the β-amyloid(10-35) fibril [J].
Burkoth, TS ;
Benzinger, TLS ;
Urban, V ;
Morgan, DM ;
Gregory, DM ;
Thiyagarajan, P ;
Botto, RE ;
Meredith, SC ;
Lynn, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (33) :7883-7889
[7]   Protein misfolding, functional amyloid, and human disease [J].
Chiti, Fabrizio ;
Dobson, Christopher M. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :333-366
[8]   Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM) [J].
Clayton, AHA ;
Hanley, QS ;
Arndt-Jovin, DJ ;
Subramaniam, V ;
Jovin, TM .
BIOPHYSICAL JOURNAL, 2002, 83 (03) :1631-1649
[9]   ANALYSIS OF TIME-RESOLVED FLUORESCENCE ANISOTROPY DECAYS [J].
CROSS, AJ ;
FLEMING, GR .
BIOPHYSICAL JOURNAL, 1984, 46 (01) :45-56
[10]   Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells [J].
Dai, Xiaowen ;
Yue, Zhilian ;
Eccleston, Mark E. ;
Swartling, Johannes ;
Slater, Nigel K. H. ;
Kaminski, Clemens F. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2008, 4 (01) :49-56