Monte Carlo estimation for nonlinear non-Gaussian state space models

被引:34
作者
Jungbacker, Borus [1 ]
Koopman, Siem Jan [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Econometr, NL-1081 HV Amsterdam, Netherlands
关键词
importance sampling; Kalman filtering; Markov chain Monte Carlo; Newton-Raphson; posterior mode; simulation smoothing; stochastic volatility model; TIME-SERIES; SIMULATION SMOOTHER;
D O I
10.1093/biomet/asm074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a proposal or importance density for state space models with a nonlinear non-Gaussian observation vector y similar to p(y|theta) and an unobserved linear Gaussian signal vector theta similar to p(theta). The proposal density is obtained from the Laplace approximation of the smoothing density p(theta|y). We present efficient algorithms to calculate the mode of p(theta|y) and to sample from the proposal density. The samples can be used for importance sampling and Markov chain Monte Carlo methods. The new results allow the application of these methods to state space models where the observation density p(y|theta) is not log-concave. Additional results are presented that lead to computationally efficient implementations. We illustrate the methods for the stochastic volatility model with leverage.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 24 条
[1]  
Anderson B., 1979, Optimal Filtering
[2]  
Black F., 1976, P 1976 M AM STAT ASS, P171
[3]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[4]   Rao-Blackwellisation of sampling schemes [J].
Casella, G ;
Robert, CP .
BIOMETRIKA, 1996, 83 (01) :81-94
[5]   SMOOTHING AND INTERPOLATION WITH THE STATE-SPACE MODEL [J].
DEJONG, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1085-1088
[6]  
DEJONG P, 1995, BIOMETRIKA, V82, P339
[7]   A simple and efficient simulation smoother for state space time series analysis [J].
Durbin, J ;
Koopman, SJ .
BIOMETRIKA, 2002, 89 (03) :603-615
[8]   Monte Carlo maximum likelihood estimation for non-Gaussian state space models [J].
Durbin, J ;
Koopman, SJ .
BIOMETRIKA, 1997, 84 (03) :669-684
[9]  
DURBIN J., 2012, Time series analysis by state-space methods, V38
[10]  
Fahrmeir L., 1991, METRIKA, P37, DOI [10.1007/BF02613597, DOI 10.1007/BF02613597]