High-density multi-population consensus genetic linkage map for peach

被引:14
|
作者
Linge, Cassia da Silva [1 ]
Antanaviciute, Laima [1 ]
Abdelghafar, Asma [1 ]
Arus, Pere [2 ]
Bassi, Daniele [3 ]
Rossini, Laura [3 ]
Ficklin, Stephen [4 ]
Gasic, Ksenija [1 ]
机构
[1] Clemson Univ, Dept Plant & Environm Sci, Clemson, SC 29634 USA
[2] Univ Barcelona, Univ Autonoma Barcelona, Ctr Recerca Agrigen, IRTA,CSIC, Campus UAB, Barcelona, Cerdanyola Del, Spain
[3] Univ Milan, Dept Agr & Environm Sci Prod Landscape Agroenergy, Milan, Italy
[4] Washington State Univ, Dept Hort, Pullman, WA 99164 USA
来源
PLOS ONE | 2018年 / 13卷 / 11期
关键词
QUANTITATIVE TRAIT LOCI; MARKER-ASSISTED SELECTION; CONSTRUCTION; QTL; GENOME; RESISTANCE; IDENTIFICATION; DISCOVERY; ROSACEAE; SNP;
D O I
10.1371/journal.pone.0207724
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Highly saturated genetic linkage maps are extremely helpful to breeders and are an essential prerequisite for many biological applications such as the identification of marker-trait associations, mapping quantitative trait loci (QTL), candidate gene identification, development of molecular markers for marker-assisted selection (MAS) and comparative genetic studies. Several high-density genetic maps, constructed using the 9K SNP peach array, are available for peach. However, each of these maps is based on a single mapping population and has limited use for QTL discovery and comparative studies. A consensus genetic linkage map developed from multiple populations provides not only a higher marker density and a greater genome coverage when compared to the individual maps, but also serves as a valuable tool for estimating genetic positions of unmapped markers. In this study, a previously developed linkage map from the cross between two peach cultivars 'Zin Dai' and 'Crimson Lady' (ZC(2)) was improved by genotyping additional progenies. In addition, a peach consensus map was developed based on the combination of the improved ZC(2) genetic linkage map with three existing high-density genetic maps of peach and a reference map of Prunus. A total of 1,476 SNPs representing 351 unique marker positions were mapped across eight linkage groups on the ZC(2) genetic map. The ZC(2) linkage map spans 483.3 cM with an average distance between markers of 1.38 cM/marker. The MergeMap and LPmerge tools were used for the construction of a consensus map based on markers shared across five genetic linkage maps. The consensus linkage map contains a total of 3,092 molecular markers, consisting of 2,975 SNPs, 116 SSRs and 1 morphological marker associated with slow ripening in peach (SR). The consensus map provides valuable information on marker order and genetic position for QTL identification in peach and other genetic studies within Prunus and Rosaceae.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] High density, Multi-population Consensus Genetic Linkage Map for Peach (Prunus persica L. Batsch)
    Antanaviciute, Laima
    Arus, Pere
    Abdelghafar, Asma
    Bassi, Daniele
    Rossini, Laura
    Gasic, Ksenija
    HORTSCIENCE, 2016, 51 (09) : S198 - S198
  • [2] Development of a high-density SSR genetic linkage map in sweet potato
    Yusha Meng
    Chenxing Zheng
    Hui Li
    Aixian Li
    Hong Zhai
    Qingmei Wang
    Shaozhen He
    Ning Zhao
    Huan Zhang
    Shaopei Gao
    Qingchang Liu
    The Crop Journal, 2021, 9 (06) : 1367 - 1374
  • [3] Development of a high-density SSR genetic linkage map in sweet potato
    Meng, Yusha
    Zheng, Chenxing
    Li, Hui
    Li, Aixian
    Zhai, Hong
    Wang, Qingmei
    He, Shaozhen
    Zhao, Ning
    Zhang, Huan
    Gao, Shaopei
    Liu, Qingchang
    CROP JOURNAL, 2021, 9 (06): : 1367 - 1374
  • [4] A high-density, integrated genetic linkage map of lettuce (Lactuca spp.)
    Truco, M. J.
    Antonise, R.
    Lavelle, D.
    Ochoa, O.
    Kozik, A.
    Witsenboer, H.
    Fort, S. B.
    Jeuken, M. J. W.
    Kesseli, R. V.
    Lindhout, P.
    Michelmore, R. W.
    Peleman, J.
    THEORETICAL AND APPLIED GENETICS, 2007, 115 (06) : 735 - 746
  • [5] SNP Discovery by GBS in Olive and the Construction of a High-Density Genetic Linkage Map
    Ahmet İpek
    Kübra Yılmaz
    Pelin Sıkıcı
    Nesrin Aktepe Tangu
    Ayşe Tülin Öz
    Murat Bayraktar
    Meryem İpek
    Hatice Gülen
    Biochemical Genetics, 2016, 54 : 313 - 325
  • [6] A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat
    Steen, RG
    Kwitek-Black, AE
    Glenn, C
    Gullings-Handley, J
    Van Etten, W
    Atkinson, OS
    Appel, D
    Twigger, S
    Muir, M
    Mull, T
    Granados, M
    Kissebah, M
    Russo, K
    Crane, R
    Popp, M
    Peden, M
    Matise, T
    Brown, DM
    Lu, J
    Kingsmore, S
    Tonellato, PJ
    Rozen, S
    Slonim, D
    Young, P
    Knoblauch, M
    Provoost, A
    Ganten, D
    Colman, SD
    Rothberg, J
    Lander, ES
    Jacob, HJ
    GENOME RESEARCH, 1999, 9 (06) : AP1 - AP8
  • [7] A high-density, integrated genetic linkage map of lettuce (Lactuca spp.)
    M. J. Truco
    R. Antonise
    D. Lavelle
    O. Ochoa
    A. Kozik
    H. Witsenboer
    S. B. Fort
    M. J. W. Jeuken
    R. V. Kesseli
    P. Lindhout
    R. W. Michelmore
    J. Peleman
    Theoretical and Applied Genetics, 2007, 115
  • [8] A high-density genetic linkage map and QTL mapping for sex in Clarias fuscus
    Lin, Xinghua
    Tan, Jiru
    Shen, Yijun
    Yang, Binlan
    Zhang, Yulei
    Liao, Yu
    Wang, Beibei
    Zhou, Dayan
    Li, Guangli
    Tian, Changxu
    AQUACULTURE, 2022, 561
  • [9] SNP Discovery by GBS in Olive and the Construction of a High-Density Genetic Linkage Map
    Ipek, Ahmet
    Yilmaz, Kubra
    Sikici, Pelin
    Tangu, Nesrin Aktepe
    Oz, Ayse Tulin
    Bayraktar, Murat
    Ipek, Meryem
    Gulen, Hatice
    BIOCHEMICAL GENETICS, 2016, 54 (03) : 313 - 325
  • [10] A high-density transcript linkage map of barley derived from a single population
    K Sato
    N Nankaku
    K Takeda
    Heredity, 2009, 103 : 110 - 117