C1 regularity for infinity harmonic functions in two dimensions

被引:104
作者
Savin, O [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1007/s00205-005-0355-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuous function u : Omega -> R, Omega subset of R-n is said to be "infinity harmonic" if it satisfies the PDE [GRAPHICS] in the viscosity sense. In this paper we prove that infinity harmonic functions are continuously differentiable when n = 2.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 6 条
[1]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[2]   ON PARTIAL DIFFERENTIAL EQUATION U2/XUXX + 2UXUYUXY + U2/YUYY = 0 [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1968, 7 (05) :395-&
[3]  
Crandall M.G., 2001, P US CHIL WORKSH NON, V6, P123
[4]  
Crandall MG, 2001, CALC VAR PARTIAL DIF, V13, P123
[5]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[6]   UNIQUENESS OF LIPSCHITZ EXTENSIONS - MINIMIZING THE SUP NORM OF THE GRADIENT [J].
JENSEN, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) :51-74