Growing macroscopic superposition states via cavity quantum optomechanics

被引:30
作者
Clarke, Jack [1 ,2 ]
Vanner, Michael R. [1 ,2 ]
机构
[1] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
quantum optics; quantum optomechanics; non-classicality; macroscopicity; quantum measurement and control; DECOHERENCE; CONVERSION; MICROWAVE;
D O I
10.1088/2058-9565/aada1d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The investigation of macroscopic quantum phenomena is a current active area of research that offers significant promise to advance the forefronts ofboth fundamental and applied quantum science. Utilising the exquisite precision and control of quantum optics provides a powerful toolset for generating such quantum states where the types and 'size' of the states that can be generated are set by the experimental parameter regime available and the resourcefulness of the protocol applied. In this work we present a new multistep scheme to 'grow' macroscopic superposition states of motion of a mechanical oscillator via cavity quantum optomechanics. The scheme consists of a series of optical pulses interacting with a mechanical mode via radiation-pressure followed by photon-counting measurements. The multistep nature of our protocol allows macroscopic superposition states to be prepared with a relaxed requirement for the single-photon optomechanical coupling strength. To illustrate the experimental feasibility of our proposal, we quantify how initial mechanical thermal occupation and mechanical decoherence affects the non-classicality and macroscopicity of the states generated and show that our scheme is resilient to optical loss. The advantages of this protocol provide a promising path to grow non-classical mechanical quantum states to a macroscopic scale under realistic experimental conditions.
引用
收藏
页数:19
相关论文
共 55 条
  • [1] Single-photon opto-mechanics in the strong coupling regime
    Akram, U.
    Kiesel, N.
    Aspelmeyer, M.
    Milburn, G. J.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [2] Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
  • [3] Arcizet O, 2011, NAT PHYS, V7, P879, DOI [10.1038/nphys2070, 10.1038/NPHYS2070]
  • [4] Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box
    Armour, AD
    Blencowe, MP
    Schwab, KC
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (14) : 148301/1 - 148301/4
  • [5] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [6] Is a tabletop search for Planck scale signals feasible?
    Bekenstein, Jacob D.
    [J]. PHYSICAL REVIEW D, 2012, 86 (12)
  • [7] A quantum optomechanical interface beyond the resolved sideband limit
    Bennett, James S.
    Khosla, Kiran
    Madsen, Lars S.
    Vanner, Michael R.
    Rubinsztein-Dunlop, Halina
    Bowen, Warwick P.
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Integrated Mach-Zehnder interferometer for Bose-Einstein condensates
    Berrada, T.
    van Frank, S.
    Buecker, R.
    Schumm, T.
    Schaff, J. -F.
    Schmiedmayer, J.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [9] Scheme to probe the decoherence of a macroscopic object
    Bose, S
    Jacobs, K
    Knight, PL
    [J]. PHYSICAL REVIEW A, 1999, 59 (05): : 3204 - 3210
  • [10] Spin Entanglement Witness for Quantum Gravity
    Bose, Sougato
    Mazumdar, Anupam
    Morley, Gavin W.
    Ulbricht, Hendrik
    Toros, Marko
    Paternostro, Mauro
    Geraci, Andrew A.
    Barker, Peter F.
    Kim, M. S.
    Milburn, Gerard
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (24)