A Probabilistic Separation Logic

被引:21
作者
Barthe, Gilles [1 ,2 ]
Hsu, Justin [3 ]
Liao, Kevin [1 ,4 ]
机构
[1] MPI Secur & Privacy, Bochum, Germany
[2] IMDEA Software Inst, Madrid, Spain
[3] Univ Wisconsin Madison, Madison, WI USA
[4] Univ Illinois, Urbana, IL USA
来源
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL | 2020年 / 4卷 / POPL期
关键词
probabilistic independence; separation logic; verified cryptography; SIMULATION; SEMANTICS; RESOURCES;
D O I
10.1145/3371123
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Probabilistic independence is a useful concept for describing the result of random sampling-a basic operation in all probabilistic languages-and for reasoning about groups of random variables. Nevertheless, existing verification methods handle independence poorly, if at all. We propose a probabilistic separation logic PSL, where separation models probabilistic independence. We first give a new, probabilistic model of the logic of bunched implications (BI). We then build a program logic based on these assertions, and prove soundness of the proof system. We demonstrate our logic by verifying information-theoretic security of cryptographic constructions for several well-known tasks, including private information retrieval, oblivious transfer, secure multi-party addition, and simple oblivious RAM. Our proofs reason purely in terms of high-level properties, like independence and uniformity.
引用
收藏
页数:30
相关论文
共 53 条
[1]  
Ackerman Nathanael L., 2019, IEEE S LOG COMP SCI
[2]  
Barthe G., 2018, EUROPEAN S PROGRAMMI, V10801, P117, DOI DOI 10.1007/978-3-319-89884-15
[3]   A Probabilistic Separation Logic [J].
Barthe, Gilles ;
Hsu, Justin ;
Liao, Kevin .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2020, 4 (POPL)
[4]   Verified Proofs of Higher-Order Masking [J].
Barthe, Gilles ;
Belaid, Sonia ;
Dupressoir, Francois ;
Fouque, Pierre-Alain ;
Gregoire, Benjamin ;
Strub, Pierre-Yves .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015, PT I, 2015, 9056 :457-485
[5]   Formal Certification of Code-Based Cryptographic Proofs [J].
Barthe, Gilles ;
Gregoire, Benjamin ;
Beguelin, Santiago Zanella .
ACM SIGPLAN NOTICES, 2009, 44 (01) :90-101
[6]   Quantitative Separation Logic A Logic for Reasoning about Probabilistic Pointer Programs [J].
Batz, Kevin ;
Kaminski, Benjamin Lucien ;
Katoen, Joost-Pieter ;
Matheja, Christoph ;
Noll, Thomas .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (POPL)
[7]   A semantics for concurrent separation logic [J].
Brookes, Stephen .
THEORETICAL COMPUTER SCIENCE, 2007, 375 (1-3) :227-270
[8]  
Chan THH, 2018, LECT NOTES COMPUT SC, V11274, P158, DOI 10.1007/978-3-030-03332-3_7
[9]  
Chor B, 1995, AN S FDN CO, P41, DOI 10.1109/SFCS.1995.492461
[10]  
Chung K.-M., 2013, IACR Cryptology ePrint Archive, V2013, P243