Darboux theory of integrability for polynomial vector fields on Sn

被引:3
|
作者
Llibre, Jaume [1 ]
Murza, Adrian C. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona, Spain
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest, Romania
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2018年 / 33卷 / 04期
关键词
Darboux integrability theory; invariant meridians; invariant parallels; n-dimensional sphere; INVARIANT ALGEBRAIC-CURVES; 1ST INTEGRALS;
D O I
10.1080/14689367.2017.1420141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a survey on the Darboux theory of integrability for polynomial vector fields, first in R-n and second in the n-dimensional sphere S-n. We also provide new results about the maximum number of invariant parallels and meridians that a polynomial vector field X on S-n can have in function of its degree. These results in some sense extend the known result on the maximum number of hyperplanes that a polynomial vector field Y in R-n can have in function of the degree of Y.
引用
收藏
页码:646 / 659
页数:14
相关论文
共 50 条