Enzyme-carbon nanotube conjugates in room-temperature ionic liquids

被引:18
|
作者
Eker, Bilge
Asuri, Prashanth
Murugesan, Saravanababu
Linhardt, Robert J.
Dordick, Jonathan S. [1 ]
机构
[1] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Ctr Biotechnol & Interdisciplinary Studies, Dept Biol & Chem Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Ctr Biotechnol & Interdisciplinary Studies, Dept Biol, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Ctr Biotechnol & Interdisciplinary Studies, Dept Chem, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
room-temperature ionic liquids; enzyme-SWNT conjugates; diffusional limitations; enzyme kinetics; thermostability; reusability;
D O I
10.1007/s12010-007-0035-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Room-temperature ionic liquids (RTILs) are intriguing solvents, which are recognized as "green" alternatives to volatile organics. Although RTILs are nonvolatile and can dissolve a wide range of charged, polar, and nonpolar organic and inorganic molecules, there remain substantial challenges in their use, not the least of which is the solvents' high viscosity that leads to potential mass transfer limitations. In the course of this work, we discovered that the simple adsorption of the bacterial protease, proteinase K, onto single-walled carbon nanotubes (SWNTs) results in intrinsically high catalytic turnover. The high surface area and the nanoscopic dimensions of SWNTs offered high enzyme loading and low mass transfer resistance. Furthermore, the enzyme-SWNT conjugates displayed enhanced thermal stability in RTILs over the native suspended enzyme counterpart and allowed facile reuse. These enzyme-SWNT conjugates may therefore provide a way to overcome key operational limitations of RTIL systems.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [1] Enzyme–Carbon Nanotube Conjugates in Room-temperature Ionic Liquids
    Bilge Eker
    Prashanth Asuri
    Saravanababu Murugesan
    Robert J. Linhardt
    Jonathan S. Dordick
    Applied Biochemistry and Biotechnology, 2007, 143 : 153 - 163
  • [2] BIOT 86-Enzyme-carbon nanotube conjugates in room temperature ionic liquids
    Eker, Bilge
    Asuri, Prashanth
    Murugesan, Saravanababu
    Linhardt, Robert J.
    Dordick, Jonathan S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [3] Diffusivity of Carbon Dioxide in Room-Temperature Ionic Liquids
    Moganty, Surya S.
    Baltus, Ruth E.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (19) : 9370 - 9376
  • [4] Room-temperature ionic liquids
    Sawinski, W
    INZYNIERIA CHEMICZNA I PROCESOWA, 2004, 25 (01): : 169 - 181
  • [5] Room-Temperature Zwitterionic Ionic Liquids
    Bordes, Romain
    Marty, Jean-Daniel
    Lauth-de Viguerie, Nancy
    FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY, 2016, 4 (01): : 85 - 94
  • [6] Polyiodides in room-temperature ionic liquids
    Abe, Hiroshi
    Aono, Masami
    Kiyotani, Tamiko
    Tsuzuki, Seiji
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (47) : 32337 - 32344
  • [7] Electrodeposition of gold at glassy carbon electrodes in room-temperature ionic liquids
    Oyama, Taku
    Okajima, Takeyoshi
    Ohsaka, Takeo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) : D322 - D327
  • [8] Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids
    Feng, Guang
    Li, Song
    Presser, Volker
    Cummings, Peter T.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (19): : 3367 - 3376
  • [9] Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids
    Yokozeki, A.
    Shiflett, Mark B.
    Junk, Christopher P.
    Grieco, Liane M.
    Foo, Thomas
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (51): : 16654 - 16663
  • [10] Electrochemical Applications of Room-Temperature Ionic Liquids
    Tsuda, Tetsuya
    Hussey, Charles L.
    ELECTROCHEMICAL SOCIETY INTERFACE, 2007, 16 (01): : 42 - 49