Diffractive optics in spiders

被引:34
|
作者
Parker, AR
Hegedus, Z
机构
[1] Univ Oxford, Dept Zool, Oxford OX1 3PS, England
[2] CSIRO, Div Telecommun & Ind Phys, Lindfield, NSW 2070, Australia
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2003年 / 5卷 / 04期
关键词
structural colour; diffraction grating; multilayer reflector; spiders;
D O I
10.1088/1464-4258/5/4/364
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The mechanisms behind the metallic colours of two species of spider are examined here with particular reference to the surface structures involved. Cosmophasis thalassina possesses a combination of a first-order diffraction grating and an underlying broadband multilayer reflector. The diffraction grating causes one spectral component to be selectively directed away from the direction of incident illumination. The laminar structure beneath produces a broadband ('white') reflectance, and with a significant proportion of the blue light being removed from the incident white light by the grating, the reflectance observed at most angles is yellow (white minus blue). Castaneira sp. possesses a zero-order diffraction grating, resulting in the antireflection of ultraviolet light. Beneath this lies a quarter-wave stack, reflecting saturated colours that change with angle of observation. The reflections of both species appear conspicuous against their natural environments, probably facilitating conspecific recognition (and/or mimicry of ants in Castaneira sp.), and constitute the first cases of structural colours analysed in spiders.
引用
收藏
页码:S111 / S116
页数:6
相关论文
共 50 条
  • [31] Nanofabrication of integrated diffractive optical elements
    Vaissié, L
    Mohammed, W
    Johnson, EG
    MICROMACHINING TECHNOLOGY FOR MICRO-OPTICS AND NANO-OPTICS, 2003, 4984 : 79 - 88
  • [32] LED color mixing with diffractive structures
    Bonenberger, Theresa
    Baumgart, Joerg
    Wendel, Simon
    Neumann, Cornelius
    LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XVII, 2013, 8641
  • [33] Sexual selection research on spiders: progress and biases
    Huber, BA
    BIOLOGICAL REVIEWS, 2005, 80 (03) : 363 - 385
  • [34] Modelling the spiders ballooning effect on the vineyard ecology
    Venturino, E.
    Isaia, M.
    Bona, F.
    Issoglio, E.
    Triolo, V.
    Badino, G.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2006, 1 (01) : 133 - 155
  • [35] The pholcid spiders of Sri Lanka (Araneae: Pholcidae)
    Huber, Bernhard A.
    ZOOTAXA, 2019, 4550 (01) : 1 - 57
  • [36] Energetics, Scaling and Sexual Size Dimorphism of Spiders
    Grossi, B.
    Canals, M.
    ACTA BIOTHEORETICA, 2015, 63 (01) : 71 - 81
  • [37] INFLUENCE OF HABITAT STRUCTURE AND VEGETATION ARCHITECTURE ON SPIDERS
    SCHEIDLER, M
    ZOOLOGISCHER ANZEIGER, 1990, 225 (5-6): : 333 - 340
  • [38] The evolution of prey-wrapping behaviour in spiders
    Barrantes, Gilbert
    Eberhard, William G.
    JOURNAL OF NATURAL HISTORY, 2007, 41 (25-28) : 1631 - 1658
  • [39] Path multicoloring with fewer colors in spiders and caterpillars
    Pagourtzis, A.
    Potika, K.
    Zachos, S.
    COMPUTING, 2007, 80 (03) : 255 - 274
  • [40] Energetics, Scaling and Sexual Size Dimorphism of Spiders
    B. Grossi
    M. Canals
    Acta Biotheoretica, 2015, 63 : 71 - 81