Multi-Trait analysis of growth traits: fitting reduced rank models using principal components for Simmental beef cattle

被引:0
|
作者
Mota, Rodrigo Reis [1 ]
Costa, Edson Vinicius [1 ]
Lopes, Paulo Savio [1 ]
Nascimento, Moyses [2 ]
da Silva, Luciano Pinheiro [3 ]
Fonseca e Silva, Fabyano [1 ]
Aarao Marques, Luiz Fernando [4 ]
机构
[1] Univ Fed Vicosa, Dept Zootecnia, Campus Univ,Ave Ph Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Estat, Vicosa, MG, Brazil
[3] Univ Fed Ceara, Dept Zootecnia, Fortaleza, CE, Brazil
[4] Univ Fed Espirito Santo, Ctr Ciencias Agr, Dept Zootecnia, Alegre, ES, Brazil
来源
CIENCIA RURAL | 2016年 / 46卷 / 09期
关键词
computational demand; genetic parameters; heritability; FACTOR-ANALYTIC MODELS; RANDOM REGRESSION-MODELS; GENETIC EVALUATION; CARCASS TRAITS; ANGUS CATTLE; WEIGHT; PARAMETERS; BRAZIL;
D O I
10.1590/0103-8478cr20150927
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The aim of this research was to evaluate the dimensional reduction of additive direct genetic covariance matrices in genetic evaluations of growth traits (range 100-730 days) in Simmental cattle using principal components, as well as to estimate (co) variance components and genetic parameters. Principal component analyses were conducted for five different models-one full and four reduced-rank models. Models were compared using Akaike information (AIC) and Bayesian information (BIC) criteria. Variance components and genetic parameters were estimated by restricted maximum likelihood (REML). The AIC and BIC values were similar among models. This indicated that parsimonious models could be used in genetic evaluations in Simmental cattle. The first principal component explained more than 96% of total variance in both models. Heritability estimates were higher for advanced ages and varied from 0.05 (100 days) to 0.30 (730 days). Genetic correlation estimates were similar in both models regardless of magnitude and number of principal components. The first principal component was sufficient to explain almost all genetic variance. Furthermore, genetic parameter similarities and lower computational requirements allowed for parsimonious models in genetic evaluations of growth traits in Simmental cattle.
引用
收藏
页码:1656 / 1661
页数:6
相关论文
共 50 条
  • [21] Mapping Quantitative Trait Loci Underlying Function-Valued Traits Using Functional Principal Component Analysis and Multi-Trait Mapping
    Kwak, Il-Youp
    Moore, Candace R.
    Spalding, Edgar P.
    Broman, Karl W.
    G3-GENES GENOMES GENETICS, 2016, 6 (01): : 79 - 86
  • [22] Identification of quantitative trait loci for carcass and growth traits in swine using principal components analysis
    Stearns, T. M.
    Rodriguez-Zas, S. L.
    Beever, J. E.
    Ellis, M.
    McKeith, F.
    Southey, B. R.
    Hartschuh, J.
    Feltes, R. J.
    POULTRY SCIENCE, 2004, 83 : 379 - 379
  • [23] Identification of quantitative trait loci for carcass and growth traits in swine using principal components analysis
    Stearns, T. M.
    Rodriguez-Zas, S. L.
    Beever, J. E.
    Ellis, M.
    McKeith, F.
    Southey, B. R.
    Hartschuh, J.
    Feltes, R. J.
    JOURNAL OF DAIRY SCIENCE, 2004, 87 : 379 - 379
  • [24] Identification of quantitative trait loci for carcass and growth traits in swine using principal components analysis
    Stearns, T. M.
    Rodriguez-Zas, S. L.
    Beever, J. E.
    Ellis, M.
    McKeith, F.
    Southey, B. R.
    Hartschuh, J.
    Feltes, R. J.
    JOURNAL OF ANIMAL SCIENCE, 2004, 82 : 379 - 379
  • [25] Estimation of (Co)Variance components and genetic parameters of fibre traits in Rambouillet sheep using multi-trait analysis
    Ahmad, Sheikh Firdous
    Khan, Nusrat Nabi
    Chakraborty, Dibyendu
    Rather, Mubashir Ali
    Shanaz, Syed
    Alam, Safeer
    Ganai, Nazir Ahmad
    TROPICAL ANIMAL HEALTH AND PRODUCTION, 2021, 53 (01)
  • [26] Estimation of (Co)Variance components and genetic parameters of fibre traits in Rambouillet sheep using multi-trait analysis
    Sheikh Firdous Ahmad
    Nusrat Nabi Khan
    Dibyendu Chakraborty
    Mubashir Ali Rather
    Syed Shanaz
    Safeer Alam
    Nazir Ahmad Ganai
    Tropical Animal Health and Production, 2021, 53
  • [27] A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle
    Bolormaa, Sunduimijid
    Pryce, Jennie E.
    Reverter, Antonio
    Zhang, Yuandan
    Barendse, William
    Kemper, Kathryn
    Tier, Bruce
    Savin, Keith
    Hayes, Ben J.
    Goddard, Michael E.
    PLOS GENETICS, 2014, 10 (03):
  • [28] Analysis of population and heterosis effects in crossbred cattle of Czech Fleckvieh and Beef Simmental parentage for growth traits
    Vostry, Lubos
    Jakubec, Vaclav
    Schlote, Werner
    Bjelka, Marek
    Bezdicek, Jiri
    Majzlik, Ivan
    ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2008, 51 (03): : 207 - 215
  • [29] Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle
    Martinez-alvaro, Marina
    Mattock, Jennifer
    Gonzalez-Recio, Oscar
    Saborio-Montero, Alejandro
    Weng, Ziqing
    Lima, Joana
    Duthie, Carol-Anne
    Dewhurst, Richard
    Cleveland, Matthew A.
    Watson, Mick
    Roehe, Rainer
    GENETICS SELECTION EVOLUTION, 2024, 56 (01)
  • [30] Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle
    Marina Martínez-Álvaro
    Jennifer Mattock
    Óscar González-Recio
    Alejandro Saborío-Montero
    Ziqing Weng
    Joana Lima
    Carol-Anne Duthie
    Richard Dewhurst
    Matthew A. Cleveland
    Mick Watson
    Rainer Roehe
    Genetics Selection Evolution, 56