The J-flow and stability

被引:45
作者
Lejmi, Mehdi [1 ]
Szekelyhidi, Gabor [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46615 USA
关键词
Kahler geometry; Parabolic flows; Stability; COMPACT KAHLER MANIFOLD; SCALAR CURVATURE; MABUCHI ENERGY; METRICS; CONVERGENCE; EQUATIONS; SURFACES; GEOMETRY; CONE;
D O I
10.1016/j.aim.2015.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the J-flow from the point of view of an algebro-geometric stability condition. In terms of this we give a lower bound for the natural associated energy functional, and we show that the blowup behavior found by Fang and Lai [11] is reflected by the optimal destabilizer. Finally we prove a general existence result on complex tori. (C) 2015 Elsevier. Inc. All rights reserved.
引用
收藏
页码:404 / 431
页数:28
相关论文
共 30 条
[1]   A microscopic convexity principle for nonlinear partial differential equations [J].
Bian, Baojun ;
Guan, Pengfei .
INVENTIONES MATHEMATICAE, 2009, 177 (02) :307-335
[2]   On compact Kahler surfaces [J].
Buchdahl, N .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) :287-+
[3]  
Chen XX, 2000, INT MATH RES NOTICES, V2000, P607
[4]  
Chen XX, 2004, COMMUN ANAL GEOM, V12, P837
[5]   Numerical characterization of the Kahler cone of a compact Kahler manifold [J].
Demailly, JP ;
Paun, M .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1247-1274
[6]  
Dervan R., PREPRINT
[7]  
Donaldson S.K., 1999, Asian J. Math., V3, P1
[8]  
Donaldson S. K., 2012, Essays in mathematics and its applications, P49
[9]  
Donaldson SK, 2005, J DIFFER GEOM, V70, P453
[10]  
Donaldson SK, 2002, J DIFFER GEOM, V62, P289