Quantum dot behavior in transition metal dichalcogenides nanostructures

被引:28
作者
Luo, Gang [1 ]
Zhang, Zhuo-Zhi [1 ]
Li, Hai-Ou [1 ]
Song, Xiang-Xiang [1 ]
Deng, Guang-Wei [1 ]
Cao, Gang [1 ]
Xiao, Ming [1 ]
Guo, Guo-Ping [1 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
transition metal dichalcogenides (TMDCs); heterostructures; electron transport; gate-defined quantum dot; HEXAGONAL BORON-NITRIDE; SINGLE-LAYER; HIGH-MOBILITY; ELECTRONIC-PROPERTIES; VALLEY POLARIZATION; COULOMB-BLOCKADE; MOS2; TRANSISTORS; MONOLAYER MOS2; GRAPHENE; TRANSPORT;
D O I
10.1007/s11467-017-0652-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.
引用
收藏
页数:13
相关论文
共 109 条
[51]   Electronic properties of MOS2 nanoparticles [J].
Li, Tianshu ;
Galli, Giulia .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (44) :16192-16196
[52]   Graphene Annealing: How Clean Can It Be? [J].
Lin, Yung-Chang ;
Lu, Chun-Chieh ;
Yeh, Chao-Huei ;
Jin, Chuanhong ;
Suenaga, Kazu ;
Chiu, Po-Wen .
NANO LETTERS, 2012, 12 (01) :414-419
[53]   Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: An Insight into Current Flow across Schottky Barriers [J].
Liu, Han ;
Si, Mengwei ;
Deng, Yexin ;
Neal, Adam T. ;
Du, Yuchen ;
Najmaei, Sina ;
Ajayan, Pulickel M. ;
Lou, Jun ;
Ye, Peide D. .
ACS NANO, 2014, 8 (01) :1031-1038
[54]   Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors [J].
Liu, Wei ;
Kang, Jiahao ;
Sarkar, Deblina ;
Khatami, Yasin ;
Jena, Debdeep ;
Banerjee, Kaustav .
NANO LETTERS, 2013, 13 (05) :1983-1990
[55]   Gate-defined graphene double quantum dot and excited state spectroscopy [J].
Liu, Xing Lan ;
Hug, Dorothee ;
Vandersypen, Lieven M. K. .
NANO LETTERS, 2010, 10 (05) :1623-1627
[56]   Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes [J].
Liu, Yuan ;
Wu, Hao ;
Cheng, Hung-Chieh ;
Yang, Sen ;
Zhu, Enbo ;
He, Qiyuan ;
Ding, Mengning ;
Li, Dehui ;
Guo, Jian ;
Weiss, Nathan O. ;
Huang, Yu ;
Duan, Xiangfeng .
NANO LETTERS, 2015, 15 (05) :3030-3034
[57]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[58]  
LU W, 2016, NANOTECHNOLOGY, V27
[59]   The valley Hall effect in MoS2 transistors [J].
Mak, K. F. ;
McGill, K. L. ;
Park, J. ;
McEuen, P. L. .
SCIENCE, 2014, 344 (6191) :1489-1492
[60]   Atomically Thin MoS2: A New Direct-Gap Semiconductor [J].
Mak, Kin Fai ;
Lee, Changgu ;
Hone, James ;
Shan, Jie ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)