Quantum dot behavior in transition metal dichalcogenides nanostructures

被引:28
作者
Luo, Gang [1 ]
Zhang, Zhuo-Zhi [1 ]
Li, Hai-Ou [1 ]
Song, Xiang-Xiang [1 ]
Deng, Guang-Wei [1 ]
Cao, Gang [1 ]
Xiao, Ming [1 ]
Guo, Guo-Ping [1 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
transition metal dichalcogenides (TMDCs); heterostructures; electron transport; gate-defined quantum dot; HEXAGONAL BORON-NITRIDE; SINGLE-LAYER; HIGH-MOBILITY; ELECTRONIC-PROPERTIES; VALLEY POLARIZATION; COULOMB-BLOCKADE; MOS2; TRANSISTORS; MONOLAYER MOS2; GRAPHENE; TRANSPORT;
D O I
10.1007/s11467-017-0652-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.
引用
收藏
页数:13
相关论文
共 109 条
[11]   Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates [J].
Da Wei ;
Li, Hai-Ou ;
Cao, Gang ;
Luo, Gang ;
Zheng, Zhi-Xiong ;
Tu, Tao ;
Xiao, Ming ;
Guo, Guang-Can ;
Jiang, Hong-Wen ;
Guo, Guo-Ping .
SCIENTIFIC REPORTS, 2013, 3
[12]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[13]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[14]   Coupling Two Distant Double Quantum Dots with a Microwave Resonator [J].
Deng, Guang-Wei ;
Wei, Da ;
Li, Shu-Xiao ;
Johansson, J. R. ;
Kong, Wei-Cheng ;
Li, Hai-Ou ;
Cao, Gang ;
Xiao, Ming ;
Guo, Guang-Can ;
Nori, Franco ;
Jiang, Hong-Wen ;
Guo, Guo-Ping .
NANO LETTERS, 2015, 15 (10) :6620-6625
[15]   Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture [J].
Deng, Guang-Wei ;
Wei, Da ;
Johansson, J. R. ;
Zhang, Miao-Lei ;
Li, Shu-Xiao ;
Li, Hai-Ou ;
Cao, Gang ;
Xiao, Ming ;
Tu, Tao ;
Guo, Guang-Can ;
Jiang, Hong-Wen ;
Nori, Franco ;
Guo, Guo-Ping .
PHYSICAL REVIEW LETTERS, 2015, 115 (12)
[16]   First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers [J].
Ding, Yi ;
Wang, Yanli ;
Ni, Jun ;
Shi, Lin ;
Shi, Siqi ;
Tang, Weihua .
PHYSICA B-CONDENSED MATTER, 2011, 406 (11) :2254-2260
[17]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[18]   Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges [J].
Duan, Xidong ;
Wang, Chen ;
Pan, Anlian ;
Yu, Ruqin ;
Duan, Xiangfeng .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (24) :8859-8876
[19]  
Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
[20]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)