Minimal surfaces in euclidean 3-space and their mean curvature 1 cousins in hyperbolic 3-space

被引:1
|
作者
Fujimori, S [1 ]
机构
[1] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
来源
关键词
minimal surfaces; CMC; 1; cousins; hyperbolic space;
D O I
10.1590/S0001-37652003000300002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that the Hopf differentials of a pair of isometric cousin surfaces, a minimal surface in euclidean 3-space and a constant mean curvature (CMC) one surface in the 3-dimensional hyperbolic space, with properly embedded annular ends, extend holomorphically to each end. Using this result, we derive conditions for when the pair must be a plane and a horosphere.
引用
收藏
页码:271 / 278
页数:8
相关论文
共 50 条
  • [41] Stationary isothermic surfaces in Euclidean 3-space
    Magnanini, Rolando
    Peralta-Salas, Daniel
    Sakaguchi, Shigeru
    MATHEMATISCHE ANNALEN, 2016, 364 (1-2) : 97 - 124
  • [42] Quasi Ruled Surfaces in Euclidean 3-space
    Elsharkawy, Ayman
    Elsayied, Hoda K.
    Refaat, Aya
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [43] ON GEODESICS OF FRAMED SURFACES IN THE EUCLIDEAN 3-SPACE
    Takahashi, Masatomo
    TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (02) : 199 - 215
  • [44] Surfaces of constant mean curvature in Euclidean 3-space orthogonal to a plane along its boundary
    Hinojosa, PA
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (01): : 33 - 35
  • [45] CURVES IN THE HYPERBOLIC PLANE AND MEAN-CURVATURE OF TORI IN 3-SPACE
    LANGER, J
    SINGER, D
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1984, 16 (SEP) : 531 - 534
  • [46] New Maximal Surfaces in Minkowski 3-Space with Arbitrary Genus and Their Cousins in de Sitter 3-Space
    Fujimori, Shoichi
    Rossman, Wayne
    Umehara, Masaaki
    Yamada, Kotaro
    Yang, Seong-Deog
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 41 - 82
  • [47] New Maximal Surfaces in Minkowski 3-Space with Arbitrary Genus and Their Cousins in de Sitter 3-Space
    Shoichi Fujimori
    Wayne Rossman
    Masaaki Umehara
    Kotaro Yamada
    Seong-Deog Yang
    Results in Mathematics, 2009, 56
  • [48] A Class of Weingarten Surfaces in Euclidean 3-Space
    Fu, Yu
    Li, Lan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [49] Singularities of swept surfaces in Euclidean 3-space
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    AIMS MATHEMATICS, 2024, 9 (09): : 26049 - 26064
  • [50] Modified Sweeping Surfaces in Euclidean 3-Space
    Li, Yanlin
    Eren, Kemal
    Ersoy, Soley
    Savic, Ana
    AXIOMS, 2024, 13 (11)