Light Extraction Enhancement in Flexible Organic Light-Emitting Diodes by a Light-Scattering Layer of Dewetted Ag Nanoparticles at Low Temperatures

被引:36
作者
Choi, Junhee [1 ]
Kim, Seonju [1 ,3 ]
Park, Cheol Hwee [1 ]
Kwack, Jin Ho [1 ,3 ]
Park, Chan Hyuk [1 ]
Hwang, Ha [1 ]
Im, Hyeong-Seop [2 ]
Park, Young Wook [4 ]
Ju, Byeong-Kwon [1 ]
机构
[1] Korea Univ, Display & Nanosyst Lab, Dept Elect Engn, Seoul 02841, South Korea
[2] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[3] Samsung Display Co, Samsung St 181, Asan 31454, Chungcheongnam, South Korea
[4] Sun Moon Univ, Sch Mech & ICT Convergence Engn, Asan 31460, Chungcheongnam, South Korea
基金
新加坡国家研究基金会;
关键词
organic light-emitting diodes (OLEDs); plasmonics; metal nanoparticles; light extraction; light scattering; SURFACE-PLASMON RESONANCE; SOLAR-CELLS; DELAYED FLUORESCENCE; EFFICIENT; DEVICES; OLEDS; INDEX; PEDOTPSS; FILMS; EMISSION;
D O I
10.1021/acsami.8b07026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrated light extraction improvement by applying a scattering layer of Ag nanoparticles physically synthesized through a low-temperature annealing process to flexible organic light-emitting diodes (OLEDs). In general, increasing the size of Ag nanoparticles is preferred to increase light scattering, but a high-temperature annealing process (similar to 400 degrees C) is required to produce them. However, flexible substrates generally cannot withstand high-temperature processes. In this study, we formed Ag nanoparticles at a low temperature of similar to 200 degrees C by inserting a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate buffer layer, thus promoting Ag dewetting. As a result, the scattering layer of enlarged Ag nanoparticles formed at low temperatures increased the external quantum efficiency by 24% in a flexible OLED compared to a reference device.
引用
收藏
页码:32373 / 32379
页数:7
相关论文
共 52 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives [J].
Aslan, K ;
Lakowicz, JR ;
Geddes, CD .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (05) :538-544
[3]   Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching [J].
Azeredo, B. P. ;
Sadhu, J. ;
Ma, J. ;
Jacobs, K. ;
Kim, J. ;
Lee, K. ;
Eraker, J. H. ;
Li, X. ;
Sinha, S. ;
Fang, N. ;
Ferreira, P. ;
Hsu, K. .
NANOTECHNOLOGY, 2013, 24 (22)
[4]   Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method [J].
Baek, Se-Woong ;
Noh, Jonghyeon ;
Lee, Chun-Ho ;
Kim, BongSoo ;
Seo, Min-Kyo ;
Lee, Jung-Yong .
SCIENTIFIC REPORTS, 2013, 3
[5]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[6]   Light extraction from OLEDs for lighting applications through light scattering [J].
Bathelt, R. ;
Buchhauser, D. ;
Gaerditz, C. ;
Paetzold, R. ;
Wellmann, P. .
ORGANIC ELECTRONICS, 2007, 8 (04) :293-299
[7]   Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles [J].
Beck, F. J. ;
Mokkapati, S. ;
Catchpole, K. R. .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07) :500-504
[8]   Plasmonics for future biosensors [J].
Brolo, Alexandre G. .
NATURE PHOTONICS, 2012, 6 (11) :709-713
[9]  
Brongersma ML, 2014, NAT MATER, V13, P451, DOI [10.1038/NMAT3921, 10.1038/nmat3921]
[10]   Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells [J].
Chang, Hong-Wei ;
Lee, Jonghee ;
Hofmann, Simone ;
Kim, Yong Hyun ;
Mueller-Meskamp, Lars ;
Luessem, Bjoern ;
Wu, Chung-Chih ;
Leo, Karl ;
Gather, Malte C. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (20)