Probing the Physicochemical Behavior of Variously Doped Li4Ti5O12 Nanoflowers

被引:3
|
作者
Salvatore, KennaL. [1 ]
Vila, Mallory N. [1 ,2 ]
Renderos, Genesis [1 ,2 ]
Li, Wenzao [1 ,2 ]
Housel, Lisa M. [2 ,3 ]
Tong, Xiao [4 ,5 ]
McGuire, Scott C. [1 ]
Gan, Joceline [1 ]
Paltis, Ariadna [1 ]
Lee, Katherine [1 ]
Takeuchi, Kenneth J. [1 ,2 ,3 ]
Marschilok, Amy C. [1 ,2 ,3 ]
Takeuchi, Esther S. [1 ,2 ,3 ,5 ]
Wong, Stanislaus S. [1 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Inst Elect Stored Energy, Stony Brook, NY 11794 USA
[3] Interdisciplinary Sci Dept, Brookhaven Natl Lab, Upton, NY 11973 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[5] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
来源
ACS PHYSICAL CHEMISTRY AU | 2022年 / 2卷 / 04期
关键词
lithium titanate; doping; nanomaterials; spectroscopy; electrochemistry; lithium ion; battery; hydrothermal synthesis; electrochemical; tuning; RATE ANODE MATERIALS; HIGH-RATE CAPABILITY; LITHIUM TITANATE; ELECTROCHEMICAL PROPERTIES; PHOTOCATALYTIC ACTIVITY; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; PERFORMANCE; GD; CA;
D O I
10.1021/acsphyschemau.1c00044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study thoroughly investigated the synthesis of not only 4 triply-doped metal oxides but also 5 singly-doped analogues of Li4Ti5O12 for electrochemical applications. In terms of synthetic novelty, the triply-doped materials were fabricated using a relatively facile hydrothermal method for the first-time, involving the simultaneous substitution of Ca for the Li site, Ln (i.e., Dy, Y, or Gd) for the Ti site, and Cl for the O site. Based on XRD, SEM, and HRTEM-EDS measurements, the resulting materials, incorporating a relatively homogeneous and uniform dispersion of both the single and triple dopants, exhibited a micron-scale flower-like morphology that remained apparently undamaged by the doping process. Crucially, the surface chemistry of all of the samples was probed using XPS in order to analyze any nuanced changes associated with either the various different lanthanide dopants or the identity of the metal precursor types involved. In the latter case, it was observed that the use of a nitrate salt precursor versus that of a chloride salt enabled not only a higher lanthanide incorporation but also the potential for favorable N-doping, all of which promoted a concomitant increase in conductivity due to a perceptible increase in Ti3+ content. In terms of the choice of lanthanide system, it was observed via CV analysis that dopant incorporation generally (albeit with some notable exceptions, especially with Y-based materials) led to the formation of higher amounts of Ti3+ species within both the singly and triply-doped materials, which consequentially led to the potential for increased diffusivity and higher mobility of Li+ species with the possibility for enabling greater capacity within these classes of metal oxides.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 50 条
  • [1] Electrochemical properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag nanomaterials
    I. A. Stenina
    A. N. Sobolev
    A. A. Kuz’mina
    T. L. Kulova
    A. M. Skundin
    N. Yu. Tabachkova
    A. B. Yaroslavtsev
    Inorganic Materials, 2017, 53 : 1039 - 1045
  • [2] Electrochemical Properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag Nanomaterials
    Stenina, I. A.
    Sobolev, A. N.
    Kuz'mina, A. A.
    Kulova, T. L.
    Skundin, A. M.
    Tabachkova, N. Yu.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2017, 53 (10) : 1039 - 1045
  • [3] Preparation and electrochemical performance of Ag doped Li4Ti5O12
    Huang, SH
    Wen, ZY
    Zhu, XJ
    Gu, ZH
    ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (11) : 1093 - 1097
  • [4] Li4Ti5O12 spinel anodes
    Michael M. Thackeray
    Khalil Amine
    Nature Energy, 2021, 6 : 683 - 683
  • [5] Synthesis and characterization of Li4Ti5O12
    Alias, N.A.
    Kufian, M.Z.
    Teo, L.P.
    Majid, S.R.
    Arof, A.K.
    Journal of Alloys and Compounds, 2009, 486 (1-2): : 645 - 648
  • [6] Li4Ti5O12 spinel anodes
    Thackeray, Michael M.
    Amine, Khalil
    NATURE ENERGY, 2021, 6 (06) : 683 - 683
  • [7] Synthesis and characterization of Li4Ti5O12
    Alias, N. A.
    Kufian, M. Z.
    Teo, L. P.
    Majid, S. R.
    Arof, A. K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 486 (1-2) : 645 - 648
  • [8] Electrochromic Behavior of Transparent Li4Ti5O12/FTO Electrode
    Yu, Xiqian
    Wang, Rui
    He, Yu
    Hu, Yongsheng
    Li, Hong
    Huang, Xuejie
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (08) : J99 - J101
  • [9] Electrical conductivity and charge compensation in Ta doped Li4Ti5O12
    Wolfenstine, J.
    Allen, J. L.
    JOURNAL OF POWER SOURCES, 2008, 180 (01) : 582 - 585
  • [10] Evaluate Sulfone-Based Reduction Sensitive Electrolytes with Lithium Li4Ti5O12/Li and Symmetric Li4+XTi5O12/Li4Ti5O12 Cells
    Demeaux, J.
    De Vito, E.
    Le Digabel, M.
    Galiano, H.
    Lemordant, D.
    Claude-Montigny, B.
    BATTERY ELECTROLYTES, 2013, 53 (36): : 5 - +