Meeting brain-computer interface user performance expectations using a deep neural network decoding framework

被引:114
作者
Schwemmer, Michael A. [1 ]
Skomrock, Nicholas D. [1 ]
Sederberg, Per B. [2 ]
Ting, Jordyn E. [3 ]
Sharma, Gaurav [3 ]
Bockbrader, Marcia A. [4 ,5 ]
Friedenberg, David A. [1 ]
机构
[1] Battelle Mem Inst, Adv Analyt, 505 King Ave, Columbus, OH 43201 USA
[2] Univ Virginia, Dept Psychol, Gilmer Hall, Charlottesville, VA 22903 USA
[3] Battelle Mem Inst, Med Devices & Neuromodulat, 505 King Ave, Columbus, OH 43201 USA
[4] Ohio State Univ, Neurol Inst, Columbus, OH 43210 USA
[5] Ohio State Univ, Dept Phys Med & Rehabil, Columbus, OH 43210 USA
关键词
MACHINE INTERFACES; MUSCLE STIMULATION; POTENTIAL USERS; WANT OPINIONS; PRIORITIES; TETRAPLEGIA; COMMUNICATION; MOVEMENTS; RELEASE; GRASP;
D O I
10.1038/s41591-018-0171-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain-computer interface (BCI) neurotechnology has the potential to reduce disability associated with paralysis by translating neural activity into control of assistive devices(1-9). Surveys of potential end-users have identified key BCI system features(10-14), including high accuracy, minimal daily setup, rapid response times, and multifunctionality. These performance characteristics are primarily influenced by the BCI's neural decoding algorithm(1,15), which is trained to associate neural activation patterns with intended user actions. Here, we introduce a new deep neural network(16) decoding framework for BCI systems enabling discrete movements that addresses these four key performance characteristics. Using intracortical data from a participant with tetraplegia, we provide offline results demonstrating that our decoder is highly accurate, sustains this performance beyond a year without explicit daily retraining by combining it with an unsupervised updating procedure(3,17- 20), responds faster than competing methods(8), and can increase functionality with minimal retraining by using a technique known as transfer learning(21). We then show that our participant can use the decoder in real-time to reanimate his paralyzed forearm with functional electrical stimulation (FES), enabling accurate manipulation of three objects from the grasp and release test (GRT)(22). These results demonstrate that deep neural network decoders can advance the clinical translation of BCI technology.
引用
收藏
页码:1669 / +
页数:11
相关论文
共 52 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Decoding motor imagery from the posterior parietal cortex of a tetraplegic human [J].
Aflalo, Tyson ;
Kellis, Spencer ;
Klaes, Christian ;
Lee, Brian ;
Shi, Ying ;
Pejsa, Kelsie ;
Shanfield, Kathleen ;
Hayes-Jackson, Stephanie ;
Aisen, Mindy ;
Heck, Christi ;
Liu, Charles ;
Andersen, Richard A. .
SCIENCE, 2015, 348 (6237) :906-910
[3]   Gentler alternatives to chips in the brain [J].
Ajemian, Robert .
NATURE, 2017, 544 (7651) :416-416
[4]   Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration [J].
Ajiboye, A. Bolu ;
Willett, Francis R. ;
Young, Daniel R. ;
Memberg, William D. ;
Murphy, Brian A. ;
Miller, Jonathan P. ;
Walter, Benjamin L. ;
Sweet, Jennifer A. ;
Hoyen, Harry A. ;
Keith, Michael W. ;
Peckham, P. Hunter ;
Simeral, John D. ;
Donoghue, John P. ;
Hochberg, Leigh R. ;
Kirsch, Robert F. .
LANCET, 2017, 389 (10081) :1821-1830
[5]   Targeting recovery: Priorities of the spinal cord-injured population [J].
Anderson, KD .
JOURNAL OF NEUROTRAUMA, 2004, 21 (10) :1371-1383
[6]  
[Anonymous], CHANCE
[7]  
[Anonymous], 1997, Neural Computation
[8]   Neural Point-and-Click Communication by a Person With Incomplete Locked-In Syndrome [J].
Bacher, Daniel ;
Jarosiewicz, Beata ;
Masse, Nicolas Y. ;
Stavisky, Sergey D. ;
Simeral, John D. ;
Newell, Katherine ;
Oakley, Erin M. ;
Cash, Sydney S. ;
Friehs, Gerhard ;
Hochberg, Leigh R. .
NEUROREHABILITATION AND NEURAL REPAIR, 2015, 29 (05) :462-471
[9]   Self-recalibrating classifiers for intracortical brain-computer interfaces [J].
Bishop, William ;
Chestek, Cynthia C. ;
Gilja, Vikash ;
Nuyujukian, Paul ;
Foster, Justin D. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. ;
Yu, Byron M. .
JOURNAL OF NEURAL ENGINEERING, 2014, 11 (02)
[10]   Restoring cortical control of functional movement in a human with quadriplegia [J].
Bouton, Chad E. ;
Shaikhouni, Ammar ;
Annetta, Nicholas V. ;
Bockbrader, Marcia A. ;
Friedenberg, David A. ;
Nielson, Dylan M. ;
Sharma, Gaurav ;
Sederberg, Per B. ;
Glenn, Bradley C. ;
Mysiw, W. Jerry ;
Morgan, Austin G. ;
Deogaonkar, Milind ;
Rezai, Ali R. .
NATURE, 2016, 533 (7602) :247-+