Chebyshev polynomial approximation for dynamical response problem of random system

被引:62
作者
Fang, T [1 ]
Leng, XL
Song, CQ
机构
[1] Northwestern Polytech Univ, Vibrat Res Ctr, Xian 710072, Peoples R China
[2] Liaoning Inst Technol, Jinzhou 121001, Peoples R China
关键词
D O I
10.1016/S0022-460X(03)00040-3
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
[No abstract available]
引用
收藏
页码:198 / 206
页数:9
相关论文
共 10 条
[1]  
Borwein P., 1995, Grad. Texts in Math., V161
[2]   A universal solution for evolutionary random response problems [J].
Fang, T ;
Li, JQ ;
Sun, MN .
JOURNAL OF SOUND AND VIBRATION, 2002, 253 (04) :909-916
[3]   Evolutionary random responses of linear random structures [J].
Fang, T ;
Leng, XL ;
Sun, MN ;
Li, JQ .
JOURNAL OF SOUND AND VIBRATION, 2002, 256 (01) :189-195
[4]   A unified approach to two types of evolutionary random response problems in engineering [J].
Fang, T ;
Sun, M .
ARCHIVE OF APPLIED MECHANICS, 1997, 67 (07) :496-506
[5]   RESPONSE OF SYSTEMS WITH UNCERTAIN PARAMETERS TO STOCHASTIC EXCITATION [J].
JENSEN, H ;
IWAN, WD .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1992, 118 (05) :1012-1025
[6]  
LENG XL, 2003, P 5 ITN C STOCH STRU
[7]  
Li J., 1996, Stochastic Structural Systems: Analysis and Modeling
[9]  
Soong TT., 1973, Random differential equations in science and engineering