Genome-driven integrated classification of breast cancer validated in over 7,500 samples

被引:151
作者
Ali, H. Raza [1 ,2 ,4 ,5 ]
Rueda, Oscar M. [1 ]
Chin, Suet-Feung [1 ]
Curtis, Christina [6 ]
Dunning, Mark J. [1 ]
Aparicio, Samuel A. J. R. [7 ]
Caldas, Carlos [1 ,3 ,4 ,5 ]
机构
[1] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Inst, Cambridge CB2 0RE, England
[2] Univ Cambridge, Dept Pathol, Cambridge CB2 1QP, England
[3] Univ Cambridge, Addenbrookes Hosp, Dept Oncol, Cambridge CB2 0QQ, England
[4] Cambridge Univ Hosp NHS, Cambridge Expt Canc Med Ctr, Cambridge CB2 0QQ, England
[5] Cambridge Univ Hosp NHS, Res Ctr, NIHR Cambridge Biomed, Cambridge CB2 0QQ, England
[6] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA
[7] British Columbia Canc Res Ctr, Dept Mol Oncol, Vancouver, BC V5Z 1L3, Canada
关键词
MUTATIONAL EVOLUTION; SUBTYPE; CHEMOTHERAPY; PREDICTOR; PROGNOSIS; SURVIVAL; METAANALYSIS; MULTICENTER; LANDSCAPE; SPECTRUM;
D O I
10.1186/s13059-014-0431-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: IntClust is a classification of breast cancer comprising 10 subtypes based on molecular drivers identified through the integration of genomic and transcriptomic data from 1,000 breast tumors and validated in a further 1,000. We present a reliable method for subtyping breast tumors into the IntClust subtypes based on gene expression and demonstrate the clinical and biological validity of the IntClust classification. Results: We developed a gene expression-based approach for classifying breast tumors into the ten IntClust subtypes by using the ensemble profile of the index discovery dataset. We evaluate this approach in 983 independent samples for which the combined copy-number and gene expression IntClust classification was available. Only 24 samples are discordantly classified. Next, we compile a consolidated external dataset composed of a further 7,544 breast tumors. We use our approach to classify all samples into the IntClust subtypes. All ten subtypes are observable in most studies at comparable frequencies. The IntClust subtypes are significantly associated with relapse-free survival and recapitulate patterns of survival observed previously. In studies of neo-adjuvant chemotherapy, IntClust reveals distinct patterns of chemosensitivity. Finally, patterns of expression of genomic drivers reported by TCGA (The Cancer Genome Atlas) are better explained by IntClust as compared to the PAM50 classifier. Conclusions: IntClust subtypes are reproducible in a large meta-analysis, show clinical validity and best capture variation in genomic drivers. IntClust is a driver-based breast cancer classification and is likely to become increasingly relevant as more targeted biological therapies become available.
引用
收藏
页数:14
相关论文
共 41 条
[1]   Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER) [J].
Andre, Fabrice ;
Bachelot, Thomas ;
Commo, Frederic ;
Campone, Mario ;
Arnedos, Monica ;
Dieras, Veronique ;
Lacroix-Triki, Magali ;
Lacroix, Ludovic ;
Cohen, Pascale ;
Gentien, David ;
Adelaide, Jose ;
Dalenc, Florence ;
Goncalves, Anthony ;
Levy, Christelle ;
Ferrero, Jean-Marc ;
Bonneterre, Jacques ;
Lefeuvre, Claudia ;
Jimenez, Marta ;
Filleron, Thomas ;
Bonnefoi, Herve .
LANCET ONCOLOGY, 2014, 15 (03) :267-274
[2]   Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome [J].
Arpino, G ;
Bardou, VJ ;
Clark, GM ;
Elledge, RM .
BREAST CANCER RESEARCH, 2004, 6 (03) :R149-R156
[3]   Sequence analysis of mutations and translocations across breast cancer subtypes [J].
Banerji, Shantanu ;
Cibulskis, Kristian ;
Rangel-Escareno, Claudia ;
Brown, Kristin K. ;
Carter, Scott L. ;
Frederick, Abbie M. ;
Lawrence, Michael S. ;
Sivachenko, Andrey Y. ;
Sougnez, Carrie ;
Zou, Lihua ;
Cortes, Maria L. ;
Fernandez-Lopez, Juan C. ;
Peng, Shouyong ;
Ardlie, Kristin G. ;
Auclair, Daniel ;
Bautista-Pina, Veronica ;
Duke, Fujiko ;
Francis, Joshua ;
Jung, Joonil ;
Maffuz-Aziz, Antonio ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Pho, Nam H. ;
Quintanar-Jurado, Valeria ;
Ramos, Alex H. ;
Rebollar-Vega, Rosa ;
Rodriguez-Cuevas, Sergio ;
Romero-Cordoba, Sandra L. ;
Schumacher, Steven E. ;
Stransky, Nicolas ;
Thompson, Kristin M. ;
Uribe-Figueroa, Laura ;
Baselga, Jose ;
Beroukhim, Rameen ;
Polyak, Kornelia ;
Sgroi, Dennis C. ;
Richardson, Andrea L. ;
Jimenez-Sanchez, Gerardo ;
Lander, Eric S. ;
Gabriel, Stacey B. ;
Garraway, Levi A. ;
Golub, Todd R. ;
Melendez-Zajgla, Jorge ;
Toker, Alex ;
Getz, Gad ;
Hidalgo-Miranda, Alfredo ;
Meyerson, Matthew .
NATURE, 2012, 486 (7403) :405-409
[4]   Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies [J].
Blows, Fiona M. ;
Driver, Kristy E. ;
Schmidt, Marjanka K. ;
Broeks, Annegien ;
van Leeuwen, Flora E. ;
Wesseling, Jelle ;
Cheang, Maggie C. ;
Gelmon, Karen ;
Nielsen, Torsten O. ;
Blomqvist, Carl ;
Heikkila, Paivi ;
Heikkinen, Tuomas ;
Nevanlinna, Heli ;
Akslen, Lars A. ;
Begin, Louis R. ;
Foulkes, William D. ;
Couch, Fergus J. ;
Wang, Xianshu ;
Cafourek, Vicky ;
Olson, Janet E. ;
Baglietto, Laura ;
Giles, Graham G. ;
Severi, Gianluca ;
McLean, Catriona A. ;
Southey, Melissa C. ;
Rakha, Emad ;
Green, Andrew R. ;
Ellis, Ian O. ;
Sherman, Mark E. ;
Lissowska, Jolanta ;
Anderson, William F. ;
Cox, Angela ;
Cross, Simon S. ;
Reed, Malcolm W. R. ;
Provenzano, Elena ;
Dawson, Sarah-Jane ;
Dunning, Alison M. ;
Humphreys, Manjeet ;
Easton, Douglas F. ;
Garcia-Closas, Montserrat ;
Caldas, Carlos ;
Pharoah, Paul D. ;
Huntsman, David .
PLOS MEDICINE, 2010, 7 (05)
[5]   Genomic and transcriptional aberrations linked to breast cancer pathophysiologies [J].
Chin, Koei ;
DeVries, Sandy ;
Fridlyand, Jane ;
Spellman, Paul T. ;
Roydasgupta, Ritu ;
Kuo, Wen-Lin ;
Lapuk, Anna ;
Neve, Richard M. ;
Qian, Zuwei ;
Ryder, Tom ;
Chen, Fanqing ;
Feiler, Heidi ;
Tokuyasu, Taku ;
Kingsley, Chris ;
Dairkee, Shanaz ;
Meng, Zhenhang ;
Chew, Karen ;
Pinkel, Daniel ;
Jain, Ajay ;
Ljung, Britt Marie ;
Esserman, Laura ;
Albertson, Donna G. ;
Waldman, Frederic M. ;
Gray, Joe W. .
CANCER CELL, 2006, 10 (06) :529-541
[6]   Emerging landscape of oncogenic signatures across human cancers [J].
Ciriello, Giovanni ;
Miller, Martin L. ;
Aksoy, Buelent Arman ;
Senbabaoglu, Yasin ;
Schultz, Nikolaus ;
Sander, Chris .
NATURE GENETICS, 2013, 45 (10) :1127-U247
[7]  
Cortazar P, 2019, LANCET, V393, P986
[8]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[9]   A new genome-driven integrated classification of breast cancer and its implications [J].
Dawson, Sarah-Jane ;
Rueda, Oscar M. ;
Aparicio, Samuel ;
Caldas, Carlos .
EMBO JOURNAL, 2013, 32 (05) :617-628
[10]   Multifactorial Approach to Predicting Resistance to Anthracyclines [J].
Desmedt, Christine ;
Di Leo, Angelo ;
de Azambuja, Evandro ;
Larsimont, Denis ;
Haibe-Kains, Benjamin ;
Selleslags, Jean ;
Delaloge, Suzette ;
Duhem, Caroline ;
Kains, Jean-Pierre ;
Carly, Birgit ;
Maerevoet, Marie ;
Vindevoghel, Anita ;
Rouas, Ghislane ;
Lallemand, Francoise ;
Durbecq, Virginie ;
Cardoso, Fatima ;
Salgado, Roberto ;
Rovere, Rodrigo ;
Bontempi, Gianluca ;
Michiels, Stefan ;
Buyse, Marc ;
Nogaret, Jean-Marie ;
Qi, Yuan ;
Symmans, Fraser ;
Pusztai, Lajos ;
D'Hondt, Veronique ;
Piccart-Gebhart, Martine ;
Sotiriou, Christos .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (12) :1578-1586