Finite computable dimension and degrees of categoricity

被引:7
作者
Csima, Barbara F. [1 ]
Stephenson, Jonathan [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Valparaiso Univ, Dept Math & Stat, Valparaiso, IN 46383 USA
[3] Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
基金
加拿大自然科学与工程研究理事会; 芬兰科学院;
关键词
Computability theory; Computable structure theory; DEGREE SPECTRA;
D O I
10.1016/j.apal.2018.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first give an example of a rigid structure of computable dimension 2 such that the unique isomorphism between two non-computably isomorphic computable copies has Turing degree strictly below 0", and not above 0'. This gives a first example of a computable structure with a degree of categoricity that does not belong to an interval of the form [0((alpha)), 0((alpha+ 1)] for any computable ordinal alpha. We then extend the technique to produce a rigid structure of computable dimension 3 such that if d(0), d(1), and d(2) are the degrees of isomorphisms between distinct representatives of the three computable equivalence classes, then each d(i) < d(0) circle plus d(1) circle plus d(2). The resulting structure is an example of a structure that has a degree of categoricity, but not strongly. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 94
页数:37
相关论文
共 15 条
[1]   Degrees That Are Not Degrees of Categoricity [J].
Anderson, Bernard ;
Csima, Barbara .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2016, 57 (03) :389-398
[2]   DEGREES OF CATEGORICITY AND SPECTRAL DIMENSION [J].
Bazhenov, Nikolay A. ;
Kalimullin, Iskander Sh ;
Yamaleev, Mars M. .
JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (01) :103-116
[3]   Computably categorical structures and expansions by constants [J].
Cholak, P ;
Goncharov, S ;
Khoussivnov, B ;
Shore, RA .
JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (01) :13-37
[4]   DEGREES OF CATEGORICITY ON A CONE VIA η-SYSTEMS [J].
Csima, Barbara F. ;
Harrison-Trainor, Matthew .
JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (01) :325-346
[5]   Degrees of Categoricity and the Hyperarithmetic Hierarchy [J].
Csima, Barbara F. ;
Franklin, Johanna N. Y. ;
Shore, Richard A. .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2013, 54 (02) :215-231
[6]   Degrees of categoricity of computable structures [J].
Fokina, Ekaterina B. ;
Kalimullin, Iskander ;
Miller, Russell .
ARCHIVE FOR MATHEMATICAL LOGIC, 2010, 49 (01) :51-67
[7]   Strength and Weakness in Computable Structure Theory [J].
Franklin, Johanna N. Y. .
COMPUTABILITY AND COMPLEXITY: ESSAYS DEDICATED TO RODNEY G. DOWNEY ON THE OCCASION OF HIS 60TH BIRTHDAY, 2017, 10010 :302-323
[8]  
GONCHAROV S.S., 1982, MATH LOGIC THEORY AL, V2, P4
[9]  
Goncharov S.S., 1980, Algebra i Logika, V19, P621
[10]   THE POSSIBLE TURING DEGREE OF THE NONZERO MEMBER IN A 2 ELEMENT DEGREE SPECTRUM [J].
HARIZANOV, VS .
ANNALS OF PURE AND APPLIED LOGIC, 1993, 60 (01) :1-30