Euler characteristic and quadrilaterals of normal surfaces

被引:2
作者
Kalelkar, Tejas [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Bangalore 560009, Karnataka, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2008年 / 118卷 / 02期
关键词
Euler characteristic; normal surfaces;
D O I
10.1007/s12044-008-0015-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact 3-manifold with a triangulation tau. We give an inequality relating the Euler characteristic of a surface F normally embedded in M with the number of normal quadrilaterals in F. This gives a relation between a topological invariant of the surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and normal quadrilaterals of F, that depends on the maximum number of tetrahedrons that share a vertex in tau.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 11 条
[1]  
GEOFFREY H, 1992, CLASSIFICATION KNOTS
[2]   THEORIE DER NORMALFLACHEN - EIN ISOTOPIEKRITERIUM FUR DEN KREISKNOTEN [J].
HAKEN, W .
ACTA MATHEMATICA, 1961, 105 (3-4) :245-375
[3]  
HAKEN W, 1962, MATH Z, V0080, P00089
[4]  
HYAM RJ, 1994, P INT C MATH ZUR BIR, V1, P601
[5]  
HYAM RJ, 1993, AMS IP STUD ADV MATH, V2, P1
[6]   ALGORITHMS FOR THE COMPLETE DECOMPOSITION OF A CLOSED 3-MANIFOLD [J].
JACO, W ;
TOLLEFSON, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1995, 39 (03) :358-406
[7]   AN ALGORITHM TO DECIDE IF A 3-MANIFOLD IS A HAKEN MANIFOLD [J].
JACO, W ;
OERTEL, U .
TOPOLOGY, 1984, 23 (02) :195-209
[8]  
KNESER H., 1929, JBER DTSCH MATH VERE, V38, P248
[9]  
Schubert H., 1961, MATH Z, V76, P116
[10]  
SERGEI M, 2003, ALGORITHMIC TOPOLOGY, V9