Analysis of autonomous Lotka-Volterra competition systems with random perturbation

被引:102
作者
Jiang, Daqing [1 ]
Ji, Chunyan [1 ,2 ]
Li, Xiaoyue [1 ,3 ]
O'Regan, Donal [4 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Changshu Inst Technol, Sch Math & Stat, Changshu 215500, Jiangsu, Peoples R China
[3] Jilin Univ, Inst Math Sci, Changchun 130012, Peoples R China
[4] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
Randomized Lotka-Volterra competition system; Brownian motion; Ito formula; Stable in time average; Stationary distribution; Ergodicity; Extinction; NONAUTONOMOUS LOGISTIC EQUATION; GLOBAL STABILITY; POSITIVE SOLUTIONS; POPULATION-DYNAMICS; RANDOM-ENVIRONMENTS; MODEL; UNIQUENESS; EXISTENCE; BEHAVIOR; DELAYS;
D O I
10.1016/j.jmaa.2011.12.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses a randomized n-species Lotka-Volterra competition system. We show that this system is stable in time average under certain conditions. Furthermore, there is a stationary distribution of this system, if extra conditions are satisfied. Also we give the extinction condition of this system. Finally, numerical simulations are carried out to support our results. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:582 / 595
页数:14
相关论文
共 38 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]  
[Anonymous], 1970, CAN MATH C MONTR
[3]   Stochastic delay Lotka-Volterra model [J].
Bahar, A ;
Mao, XR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (02) :364-380
[4]   Competitive Lotka-Volterra population dynamics with jumps [J].
Bao, Jianhai ;
Mao, Xuerong ;
Yin, Geroge ;
Yuan, Chenggui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6601-6616
[5]  
Chen L. S., 1993, Nonlinear Biological Dynamical System
[6]  
Friedman H. I., 1998, DETERMINISTIC MATH M
[7]  
Gard T. C., 1988, INTRO STOCHASTIC DIF
[8]   GLOBAL STABILITY IN MANY-SPECIES SYSTEMS [J].
GOH, BS .
AMERICAN NATURALIST, 1977, 111 (977) :135-143
[9]  
Golpalsamy K., 1984, J MATH BIOL, V19, P157
[10]  
Golpalsamy K., 1982, J AUSTRAL MATH SOC B, V24, P160