Assessment of Waste Marble Powder on the Mechanical Properties of High-Strength Concrete and Evaluation of Its Shear Strength

被引:6
|
作者
El-Mandouh, Mahmoud A. [1 ]
Hu, Jong-Wan [2 ,3 ]
Mohamed, Ayman S. [1 ]
Abd El-Maula, Ahmed S. [4 ]
机构
[1] Beni Suef Univ, Fac Technol & Educ, Civil Construct Technol Dept, Bani Suwayf 62511, Egypt
[2] Incheon Natl Univ, Dept Civil & Environm Engn, Incheon 22012, South Korea
[3] Incheon Natl Univ, Incheon Disaster Prevent Res Ctr, Incheon 22012, South Korea
[4] Benha Univ, Shoubra Fac Engn, Civil Engn Dept, Banha 13511, Egypt
关键词
waste marble powder; shear strength; reinforced concrete beams; high-strength concrete; CEMENT; DUST;
D O I
10.3390/ma15207125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Currently, the costs of building materials, especially cement, are increasing. Waste marble powder (WMP) could be used as a cement replacement material to produce environmentally friendly concrete to help preserve resources and reduce environmental pollution. The study's goals are (1) to evaluate the effects of using marble powder in place of cement in high-strength concrete (HSC) on the material's mechanical properties and durability characteristics. (2) The study is expanded to assess the effect of using partial WMP on the shear behavior of HSC beams under static loads. Eight half-scale simply supported reinforced beams with and without WMP have been tested. Each beam's cross-section was 120 x 200 mm, and each beam had a total length of 1000 mm. The ratios of the used WMP were 0%, 2.5%, 5%, 7.5% by weight, and two different stirrup ratios, 0% and 0.47%, were used. When applied to HSC beams with and without WMP, the shear strength provisions of two of the most used codes, such as the locally used Egyptian Code (ECP 207) and the internationally used American Concrete Institute's (ACI-2019), were examined. Using the ABAQUS software, the experimental results were compared to the findings of the nonlinear finite element analysis. The results established that partial replacement of cement by WMP led to increases in the concrete's compressive and tensile strengths of about 15% and 16%, respectively. When tested specimens were exposed to acid attack, there were slight losses in weight and compressive strength (1.25% to 2.47%) for both with and without the addition of WMP. Both the concrete with and without WMP showed the same level of water absorption. Additionally, WMP led to an enhancement in the shear capacities for all beams. Increasing the WMP ratio from 0% to 2.5%, 5%, and 7.5% increased the shear capacity by about 13%, 20%, and 28%, respectively, for beams without stirrups, while for beams with stirrups, the shear capacity improved by 12%, 19%, and 25%, respectively. The enhancement in the beams' shear capacities could be attributed to the advanced concrete matrix produced by WMP's extremely small particle size.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms
    Khan, Kaffayatullah
    Ahmad, Waqas
    Amin, Muhammad Nasir
    Ahmad, Ayaz
    Nazar, Sohaib
    Alabdullah, Anas Abdulalim
    Abu Arab, Abdullah Mohammad
    MATERIALS, 2022, 15 (12)
  • [42] Investigation of mechanical and durability properties of sustainable high-strength concrete
    Riaz, Mamoon
    Alam, Zeshan
    Zafar, Tayyab
    Javed, Usman
    Akhlaq, Hanzlah
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-FORENSIC ENGINEERING, 2023, 176 (01) : 3 - 15
  • [43] Mechanical properties of high-strength concrete with consideration for precast applications
    Mokhtarzadeh, A
    French, C
    ACI MATERIALS JOURNAL, 2000, 97 (02) : 136 - 147
  • [44] Empirical Relationships for Prediction of Mechanical Properties of High-Strength Concrete
    Mostofinejad, Davood
    Bahmani, Hadi
    Eshaghi-Milasi, Saadat
    Nozhati, Majid
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (01) : 315 - 332
  • [45] Mechanical Properties of High-Strength Self-Compacting Concrete
    Zende, Aijaz Ahmad
    Momin, Asif Iqbal. A.
    Khadiranaikar, Rajesab B.
    Alsabhan, Abdullah H.
    Alam, Shamshad
    Khan, Mohammad Amir
    Qamar, Mohammad Obaid
    ACS OMEGA, 2023, 8 (20): : 18000 - 18008
  • [46] Short-Term Mechanical Properties of High-Strength Concrete
    Logan, Andrew
    Choi, Wonchang
    Mirmiran, Amir
    Rizkalla, Sami
    Zia, Paul
    ACI MATERIALS JOURNAL, 2009, 106 (05) : 413 - 418
  • [47] Effect of nanosilica on durability and mechanical properties of high-strength concrete
    Ganesh, Prakasam
    Murthy, Avadhanam Ramachandra
    Kumar, Subramanian Sundar
    Reheman, M. Mohammed Saffiq
    Iyer, Nagesh R.
    MAGAZINE OF CONCRETE RESEARCH, 2016, 68 (05) : 229 - 236
  • [48] Effect of silica fume on mechanical properties of high-strength concrete
    Mazloom, M
    Ramezanianpour, AA
    Brooks, JJ
    CEMENT & CONCRETE COMPOSITES, 2004, 26 (04): : 347 - 357
  • [49] Effect on mechanical properties and microstructure of high-strength eco-friendly concrete with waste glass powder-eggshell particles
    Yuan, Xiaosa
    Dai, Mingjiang
    Gao, Yingjie
    Zhou, Yanbo
    Liu, Fang
    JOURNAL OF BUILDING ENGINEERING, 2023, 79
  • [50] INFLUENCE OF QUARTZ SAND AND MARBLE-SLUDGE POWDER AS REPLACEMENTS FOR FINE AGGREGATE ON THE MECHANICAL PROPERTIES OF HIGH-STRENGTH SELF-COMPACTING CONCRETE
    Dhanalakshmi, A.
    Hameed, M. Shahul
    MATERIALI IN TEHNOLOGIJE, 2021, 55 (04): : 517 - 523