Asymptotic Approximations to the Solution of the Singularly Perturbed Linear-Quadratic Optimal Control Problem with Terminal Path Constraints

被引:1
作者
Kalinin, A. I. [1 ]
Lavrinovich, L. I. [1 ]
机构
[1] Belarusian State Univ, Minsk, BELARUS
关键词
optimal control; linear system; quadratic performance criterion; singular perturbations; asymptotic approximations; suboptimal feedback design; PERTURBATIONS;
D O I
10.1134/S0005117920060041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum-energy control problem for a linear singularly perturbed system with linear constraints imposed on the right endpoint of the trajectories is considered. Asymptotic approximations in the form of open loop and feedback controls to the optimal control (solution of this problem) are constructed. The main advantage of the algorithms proposed below consists in the decomposition of the original problem into two unperturbed optimal control problems of smaller dimension.
引用
收藏
页码:988 / 1002
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1967, Foundations of optimal control theory
[2]  
[Anonymous], KACHESTVENNAYA TEORI
[3]  
Bryson A.E., 1969, Applied Optimal Control
[4]   Singular perturbations in control problems [J].
Dmitriev, MG ;
Kurina, GA .
AUTOMATION AND REMOTE CONTROL, 2006, 67 (01) :1-43
[5]  
Gabasov R., 1984, KONSTRUKTIVNYE METOD
[6]  
Gicev T. R., 1978, Dokl. Bolg. Acad. Sci, V31, P935
[7]  
GLIZER VY, 1975, DOKL AKAD NAUK SSSR+, V225, P997
[8]   To the Synthesis of Optimal Control Systems [J].
Kalinin, A. I. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (03) :378-383
[9]   Application of the small parameter method to the singularly perturbed linear-quadratic optimal control problem [J].
Kalinin, A. I. ;
Lavrinovich, L. I. .
AUTOMATION AND REMOTE CONTROL, 2016, 77 (05) :751-763
[10]  
KALININ AI, 1995, J COMPUT SYS SC INT+, V33, P75