Fast Euclidean distance transformation in two scans using a 3 x 3 neighborhood

被引:72
作者
Shih, FY [1 ]
Wu, YT [1 ]
机构
[1] New Jersey Inst Technol, Coll Comp Sci, Comp Vis Lab, Newark, NJ 07102 USA
关键词
distance transformation; Euclidean distance; image processing; object representation;
D O I
10.1016/j.cviu.2003.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cuisenaire and Macq [Comp. Vis. Image Understand., 76(2) (1999) 163] proposed a fast Euclidean distance transformation (EDT) by propagation using multiple neighborhoods and bucket sorting. To save the time for bucket sorting and to reduce the complexity of multiple neighborhoods, we propose a new, simple and fast EDT in two scans using a 3 x 3 neighborhood. By recording the relative x- and y-coordinates, an optimal two-scan algorithm can be developed to achieve the EDT correctly and efficiently in a constant time without iterations. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 13 条
[11]   THRESHOLD DECOMPOSITION OF GRAY-SCALE MORPHOLOGY INTO BINARY MORPHOLOGY [J].
SHIH, FYC ;
MITCHELL, OR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (01) :31-42
[12]  
SHIH FYC, 1991, PATTERN RECOGN, V24, P195, DOI 10.1016/0031-3203(91)90061-9
[13]  
Vincent L., 1991, Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), P520, DOI 10.1109/CVPR.1991.139746