superconductor;
microprocessor;
single flux quantum;
bit-serial;
LSI;
D O I:
10.1093/ietele/e91-c.3.342
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
We describe the development of single-flux-quantum (SFQ) microprocessors and the related technologies such as designing, circuit architecture, microarchitecture, etc. Since the microprocessors studied here aim for a general-purpose computing system, we employ the complexity-reduced (CORE) architecture in which the high-speed nature of the SFQ circuits is used not for increasing processor performance but for reducing the circuit complexity. The bit-serial processing is the most suitable way to realize the CORE architecture. We assembled all the best technologies concerning SFQ integrated circuits and designed the SFQ microprocessors, CORE1 alpha, CORE1 beta, and CORE1 gamma. The CORE1 beta was made up of about 11000 Josephson junctions and successfully demonstrated. The peak performance reached 1400 million operations per second with a power consumption of 3.4 mW. We showed that the SFQ microprocessors had an advantage in a performance density to semiconductor's ones, which lead to the potential for constructing a high performance SFQ-circuit-based computing system.