Liouvillian Propagators and Degenerate Parametric Amplification with Time-Dependent Pump Amplitude and Phase

被引:2
作者
Acosta-Humanez, Primitivo B. [1 ]
Suazo, Erwin [2 ,3 ]
机构
[1] Univ Atlantico & Intelectual Co, Dept Math, Barranquilla, Colombia
[2] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR USA
[3] Arizona State Univ, Sch Math & Stat, Tempe, AZ 85287 USA
来源
ANALYSIS, MODELLING, OPTIMIZATION, AND NUMERICAL TECHNIQUES | 2015年 / 121卷
关键词
Cauchy initial value problem; Degenerate harmonic oscillator; Differential Galois theory; Mehler's formula; Linear Schr; dinger equation; Liouvillian propagator;
D O I
10.1007/978-3-319-12583-1_21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This chapter is complementary to previous work of the authors, see (Acosta-Humanez et al., http://arxiv.org/abs/1311.2479, 2013; J. Phys. A Math. Theor. 46(45): 455203-455219, 2013). We present in detail missed computations using differential Galois theory dealing with the construction of one-dimensional propagators for the degenerate parametric amplification with time-dependent pump amplitude and phase phi = 0 and phi = pi/2. Also presented is a generalization of Liouvillian propagators for the n-dimensional case, which concerns to the study of explicit solutions for the Cauchy problem of the Schrodinger equation in R-d: i partial derivative psi/partial derivative t = -1/2 Delta psi + Sigma(d)(j=1) b(j) (t)/2 x(j)(2)psi - f(j)(t)x (j) psi + ig (j) (t) partial derivative psi/partial derivative x(j) - i c(j) (t)/2 ( 2x(j) partial derivative psi/partial derivative x(j) + psi) using differential Galois theory.
引用
收藏
页码:295 / 307
页数:13
相关论文
共 17 条
[11]   REMARKS ON CONVERGENCE OF THE FEYNMAN PATH-INTEGRALS [J].
FUJIWARA, D .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) :559-600
[12]   A CONSTRUCTION OF THE FUNDAMENTAL SOLUTION FOR THE SCHRODINGER-EQUATION [J].
FUJIWARA, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 35 :41-96
[13]   NON-STOCHASTICITY OF TIME-DEPENDENT QUADRATIC HAMILTONIANS AND THE SPECTRA OF CANONICAL-TRANSFORMATIONS [J].
HAGEDORN, GA ;
LOSS, M ;
SLAWNY, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (04) :521-531
[14]   SYMPLECTIC CLASSIFICATION OF QUADRATIC-FORMS, AND GENERAL MEHLER FORMULAS [J].
HORMANDER, L .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (03) :413-449
[15]   ON THE QUANTIZATION OF THE DISSIPATIVE SYSTEMS [J].
KANAI, E .
PROGRESS OF THEORETICAL PHYSICS, 1948, 3 (04) :440-442
[16]   Energy-Critical NLS with Quadratic Potentials [J].
Killip, Rowan ;
Visan, Monica ;
Zhang, Xiaoyi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (12) :1531-1565
[17]   DEGENERATE PARAMETRIC AMPLIFICATION WITH TIME-DEPENDENT PUMP AMPLITUDE AND PHASE [J].
RAIFORD, MT .
PHYSICAL REVIEW A, 1974, 9 (05) :2060-2069