Design and performance of the ADMX SQUID-based microwave receiver

被引:63
作者
Asztalos, S. J. [2 ]
Carosi, G. [2 ]
Hagmann, C. [2 ]
Kinion, D. [2 ]
van Bibber, K. [2 ]
Hotz, M. [1 ]
Rosenberg, L. J. [1 ]
Rybka, G. [1 ]
Wagner, A. [1 ]
Hoskins, J. [3 ]
Martin, C. [3 ]
Sullivan, N. S. [3 ]
Tanner, D. B. [3 ]
Bradley, R. [4 ]
Clarke, John [5 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ Florida, Gainesville, FL 32611 USA
[4] Natl Radio Astron Observ, Charlottesville, VA 22903 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
Microwave cavity; SQUIDS; Axion; Dark matter; QUANTUM INTERFERENCE DEVICE; RADIOFREQUENCY-AMPLIFIER; INVISIBLE-AXION; LOW-NOISE; DETECTOR; SEARCH;
D O I
10.1016/j.nima.2011.07.019
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly interacting relic axion particles by searching for their conversion to microwave photons in a resonant cavity positioned in a strong magnetic field. Given the extremely low expected axion-photon conversion power we have designed, built and operated a microwave receiver based on a Superconducting QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as well as the analysis of narrow band microwave signals. We demonstrate the sustained use of a SQUID amplifier operating between 812 and 860 MHz with a noise temperature of 1 K. The receiver has a noise equivalent power of 1.1 x 10(-24) W/root Hz in the band of operation for an integration time of 1.8 X 10(3) s. Published by Elsevier B.V.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 20 条
[1]   Large-scale microwave cavity search for dark-matter axions -: art. no. 092003 [J].
Asztalos, S ;
Daw, E ;
Peng, H ;
Rosenberg, LJ ;
Hagmann, C ;
Kinion, D ;
Stoeffl, W ;
van Bibber, K ;
Sikivie, P ;
Sullivan, NS ;
Tanner, DB ;
Nezrick, F ;
Turner, MS ;
Moltz, DM ;
Powell, J ;
André, MO ;
Clarke, J ;
Mück, M ;
Bradley, RF .
PHYSICAL REVIEW D, 2001, 64 (09)
[2]   SQUID-Based Microwave Cavity Search for Dark-Matter Axions [J].
Asztalos, S. J. ;
Carosi, G. ;
Hagmann, C. ;
Kinion, D. ;
van Bibber, K. ;
Hotz, M. ;
Rosenberg, L. J. ;
Rybka, G. ;
Hoskins, J. ;
Hwang, J. ;
Sikivie, P. ;
Tanner, D. B. ;
Bradley, R. ;
Clarke, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[3]   Cryogenic, low-noise, balanced amplifiers for the 300-1200 MHz band using heterostructure field-effect transistors [J].
Bradley, RF .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 72 :137-144
[4]  
Clarke J., 2006, SQUID HDB, V2, P1
[5]   Effect of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier [J].
Daw, E ;
Bradley, RF .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (04) :1925-1929
[6]   THE MEASUREMENT OF THERMAL RADIATION AT MICROWAVE FREQUENCIES [J].
DICKE, RH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1946, 17 (07) :268-275
[7]  
Friss H. T., 1944, P IRE, V32, P419, DOI [10.1109/JRPROC.1944.232049, DOI 10.1109/JRPROC.1944.232049]
[8]   CAVITY DESIGN FOR A COSMIC AXION DETECTOR [J].
HAGMANN, C ;
SIKIVIE, P ;
SULLIVAN, N ;
TANNER, DB ;
CHO, SI .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (03) :1076-1085
[9]   A cavity experiment to search for hidden sector photons [J].
Jaeckel, Joerg ;
Ringwald, Andreas .
PHYSICS LETTERS B, 2008, 659 (03) :509-514
[10]   Need for purely laboratory-based axionlike particle searches [J].
Jaeckel, Joerg ;
Masso, Eduard ;
Redondo, Javier ;
Ringwald, Andreas ;
Takahashi, Fuminobu .
PHYSICAL REVIEW D, 2007, 75 (01)