Maghemite (hematite) core (shell) nanorods via thermolysis of a molecular solid of Fe-complex

被引:53
作者
Chaudhari, N. S. [1 ]
Warule, S. S. [1 ]
Muduli, S. [2 ]
Kale, B. B. [1 ]
Jouen, S. [3 ]
Lefez, B. [3 ]
Hannoyer, B. [3 ]
Ogale, S. B. [2 ]
机构
[1] Govt India, Ctr Mat Elect Technol, Dept Informat Technol, Pune 411008, Maharashtra, India
[2] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India
[3] Univ Rouen, Grp Phys Mat, GPM UMR CNRS 6634, Inst Mat Rouen, F-76801 St Etienne, France
关键词
MAGNETIC-PROPERTIES; ALPHA-FE2O3; NANOPARTICLES; GAMMA-FE2O3; PARTICLES; OXIDATION; FE3O4; MORPHOLOGY; NANOTUBES;
D O I
10.1039/c1dt10319a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
An Fe-metal complex with 2'-hydroxy chalcone (2'-HC) ligands [Fe(III) (2'-hydroxy chalcone) 3] is synthesized by a chemical route and is subjected to different thermal treatments. Upon thermolysis in air at 450 degrees C for 3 h the complex yields maghemite (gamma-Fe2O3) nanorods with a thin hematite (alpha-Fe2O3) shell. X-Ray diffraction (XRD), Mossbauer spectroscopy, diffuse reflectance spectroscopy (UV-DRS), high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometry (VSM) are used to characterize the samples. The stability of the ligand and the Fe-complex is further examined by using thermogravimmetric/differential thermal analysis (TGA/DTA). We suggest a residual ligand controlled mechanism for the formation of an anisotropic nanostructure in a crumbling molecular solid undergoing ligand decomposition. Since the band gap of iron oxide is in the visible range, we explored the use of our core shell nano-rod sample for photocatalytic activity for H-2 generation by H2S splitting under solar light. We observed high photocatalytic activity for hydrogen generation (75 ml h(-1)).
引用
收藏
页码:8003 / 8011
页数:9
相关论文
共 31 条
[1]   Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity [J].
Apte, S. K. ;
Naik, S. D. ;
Sonawane, R. S. ;
Kale, B. B. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (02) :412-414
[2]   Functionalisation of magnetic nanoparticles for applications in biomedicine [J].
Berry, CC ;
Curtis, ASG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) :R198-R206
[3]   Low temperature synthesis of magnetite and maghemite nanoparticles [J].
Bhagwat, Shrikant ;
Singh, Hema ;
Athawale, Anjali ;
Hannoyer, Beatrice ;
Jouen, Samuel ;
Lefez, Benoit ;
Kundaliya, Darshan ;
Pasricha, Renu ;
Kulkarni, Shailaja ;
Ogale, Satishchandra .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (12) :4294-4302
[4]   A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation [J].
Brown, ASC ;
Hargreaves, JSJ ;
Rijniersce, B .
CATALYSIS LETTERS, 1998, 53 (1-2) :7-13
[5]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[6]   KINETIC PARAMETERS FROM THERMOGRAVIMETRIC DATA [J].
COATS, AW ;
REDFERN, JP .
NATURE, 1964, 201 (491) :68-&
[7]  
Cornell R. M, 2003, IRON OXIDES
[8]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[9]  
2-B
[10]   Nanowire structural evolution from Fe3O4 to ε-Fe2O3 [J].
Ding, Yong ;
Morber, Jenny Ruth ;
Snyder, Robert L. ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (07) :1172-1178