Solutions and the Generalized Hyers-Ulam-Rassias Stability of a Generalized Quadratic-Additive Functional Equation

被引:3
作者
Janfada, M. [1 ]
Shourvazi, R. [1 ]
机构
[1] Sabzevar Tarbiat Moallem Univ, Dept Math, Sabzevar, Iran
关键词
SPACES; VARIABLES; MAPPINGS;
D O I
10.1155/2011/326951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study general solutions and generalized Hyers-Ulam-Rassias stability of the following n-dimensional functional equation f (Sigma(k)(i=1) x(i)) + (k - 2) Sigma(k)(i=1) f(x(i)) = Sigma(k)(i=1) Sigma(k)(j=1,j>i) f (x(i) + x(j)), k >= 3, on non-Archimedean normed spaces.
引用
收藏
页数:19
相关论文
共 34 条
[1]  
Aczel J., 1989, ENCY MATH ITS APPL, V31
[2]  
[Anonymous], MATH ITS APPL
[3]  
[Anonymous], 2007, INT J MATH MATH SCI, DOI DOI 10.1155/2007/63239
[4]   On stability of a functional equation with n variables [J].
Bae, JH ;
Park, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (04) :856-868
[5]  
Borelli C, 1995, Int JMath Math Sci, V18, P229
[6]  
Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]   Stability of Cubic and Quartic Functional Equations in Non-Archimedean Spaces [J].
Gordji, M. Eshaghi ;
Savadkouhi, M. B. .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) :1321-1329
[9]  
Hyers D. H., 1998, PROGR NONLINEAR DIFF, V34
[10]  
Hyers D.H., 1992, Aequationes Math, V44, P125, DOI [DOI 10.1007/BF01830975, 10.1007/BF01830975]