Sparse random block matrices

被引:3
作者
Cicuta, Giovanni M. [1 ]
Pernici, Mario [2 ]
机构
[1] Univ Parma, Dept Phys, Viale Sci 7A, I-43100 Parma, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
sparse; random; block; random matrices; sparse matrices; RANDOM BAND MATRICES; EIGENVALUE DISTRIBUTION; SPECTRUM; DENSITY; MOMENTS; LIMIT; MODEL;
D O I
10.1088/1751-8121/ac3468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral moments of ensembles of sparse random block matrices are analytically evaluated in the limit of large order. The structure of the sparse matrix corresponds to the Erdos-Renyi random graph. The blocks are i.i.d. random matrices of the classical ensembles GOE or GUE. The moments are evaluated for finite or infinite dimension of the blocks. The correspondences between sets of closed walks on trees and classes of irreducible partitions studied in free probability together with functional relations are powerful tools for analytic evaluation of the limiting moments. They are helpful to identify probability laws for the blocks and limits of the parameters which allow the evaluation of all the spectral moments and of the spectral density.
引用
收藏
页数:27
相关论文
共 82 条
[1]  
ANDERSON G. W., 2010, Cambridge Studies in Advanced Mathematics, V118
[2]  
[Anonymous], 2011, The Oxford Handbook of Random Matrix Theory
[3]   The Integrated Density of States of the Random Graph Laplacian [J].
Aspelmeier, T. ;
Zippelius, A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :759-773
[4]   On limit theorem for the eigenvalues of product of two random matrices [J].
Bai, Z. D. ;
Miao, Baiqi ;
Jin, Baisuo .
JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (01) :76-101
[5]  
Bai ZD, 1999, STAT SINICA, V9, P611
[6]  
Bai Zhidong, 2014, SPECTRAL THEORY LARG
[7]   Free Bessel Laws [J].
Banica, T. ;
Belinschi, S. T. ;
Capitaine, M. ;
Collins, B. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (01) :3-37
[8]  
Barrat A., 2008, Dynamical Processes on Complex Networks
[9]  
Barucca P, 2019, ARXIV190400460
[10]   Limiting spectral distribution of block matrices with Toeplitz block structure [J].
Basu, Riddhipratim ;
Bose, Arup ;
Ganguly, Shirshendu ;
Hazra, Rajat Subhra .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) :1430-1438