On equal values of Stirling numbers of the second kind

被引:2
作者
Ferenczik, J. [1 ]
Pinter, A. [1 ,2 ]
Porvazsnyik, B. [1 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Univ Debrecen, Hungarian Acad Sci, H-4010 Debrecen, Hungary
关键词
Stirling numbers of second kind; Baker method; Baker-Davenport reduction method;
D O I
10.1016/j.amc.2011.01.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
S-k(n) denote the Stirling number of the second kind with parameters k and n, i. e. S-k(n) the number of the partition of n elements into k non-empty sets. We formulate the following conjecture concerning the common values of Stirling numbers: Let 1 < a < b be fixed integers. Then all the solutions of the equation S-a(x) = S-b(y) with x > a, y > b are S-5(6) = S-2(5) = 15 and S-90(91) = S-2(13) = 4095. In this note our conjecture is proved for max(a, b) <= 100 and log b/log a is not an element of Q by using some powerful tools from the modern theory of Diophantine equations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:980 / 984
页数:5
相关论文
共 15 条
  • [1] AVANESOV ET, 1966, ACTA ARITH, V12, P409
  • [2] Irreducibility of polynomials and arithmetic progressions with equal products of terms
    Beukers, F
    Shorey, TN
    Tijdeman, R
    [J]. NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 11 - 26
  • [3] Bilu Yu., DIOPHANTINE EQ UNPUB
  • [4] BRINDZA B, 1991, PUBL MATH-DEBRECEN, V39, P159
  • [5] Integral points on hyperelliptic curves
    Bugeaud, Yann
    Mignotte, Maurice
    Siksek, Samir
    Stoll, Michael
    Tengely, Szabolcs
    [J]. ALGEBRA & NUMBER THEORY, 2008, 2 (08) : 859 - 885
  • [6] Cohen H., 2007, NUMBER THEORY VOL 2
  • [7] de Weger B.M.M., 1989, STICHTING MATH CENTR, V65
  • [8] A binomial diophantine equation
    DeWeger, BMM
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1996, 47 (186) : 221 - 231
  • [9] Hajdu L, 2000, PUBL MATH-DEBRECEN, V56, P391
  • [10] Matveev E. M., 2000, IZV MATH+, V64, P125