Irregular Double Obstacle Problems with Orlicz Growth

被引:9
作者
Byun, Sun-Sig [1 ,2 ]
Liang, Shuang [3 ]
Ok, Jihoon [4 ,5 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[4] Kyung Hee Univ, Dept Appl Math, Yongin 17104, South Korea
[5] Kyung Hee Univ, Inst Nat Sci, Yongin 17104, South Korea
关键词
Nonlinear elliptic equation; Orlicz growth; Double obstacles; Calderon-Zygmund estimate; ELLIPTIC-EQUATIONS; POINTWISE REGULARITY; SPACES;
D O I
10.1007/s12220-020-00352-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an irregular double obstacle problem with Orlicz growth over a nonsmooth bounded domain. We establish a global Calderon-Zygmund estimate by proving that the gradient of the solution to such a nonlinear elliptic problem is as integrable as both the nonhomogeneous term in divergence form and the gradient of the associated double obstacles. We also investigate minimal regularity requirements on the relevant nonlinear operator for the desired regularity estimate.
引用
收藏
页码:1965 / 1984
页数:20
相关论文
共 37 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
[Anonymous], 2000, NOTICES AM MATH SOC
[4]   The Cauchy-Dirichlet problem for a general class of parabolic equations [J].
Baroni, Paolo ;
Lindfors, Casimir .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03) :593-624
[5]   Riesz potential estimates for a general class of quasilinear equations [J].
Baroni, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :803-846
[6]   Lorentz estimates for obstacle parabolic problems [J].
Baroni, Paolo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 96 :167-188
[7]  
Bers L., 1958, Surveys Appl. Math, Vvol 3
[8]   Degenerate problems with irregular obstacles [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :107-160
[9]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[10]   Gradient estimates for nonlinear elliptic double obstacle problems [J].
Byun, Sun-Sig ;
Ryu, Seungjin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)