Solving multiple-objective optimization problems using GISMOO algorithm

被引:1
作者
Zinflou, Arnaud [1 ]
Gagne, Caroline [1 ]
Gravel, Marc [1 ]
机构
[1] Univ Quebec Chicoutimi, Dept Math & Informat, Chicoutimi, PQ, Canada
来源
2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009) | 2009年
关键词
evolutionnary algorithm; artificial immune systems; multiple-objective optimization; hybridization; Pareto front; MOKP;
D O I
10.1109/NABIC.2009.5393704
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we proposed a new Pareto generic algorithm which hybridizes genetic algorithm and artificial immune systems. Numerical experiments were made using a classical benchmark in multiple-objective optimization (MOKP). Results show that our approach is able to obtain better performance than two state of the art approaches: NSGAII and PMSMO.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 14 条
[1]  
[Anonymous], TIK REP
[2]   Solving multiobjective optimization problems using an artificial immune system [J].
Coello C.A.C. ;
Cortés N.C. .
Genetic Programming and Evolvable Machines, 2005, 6 (2) :163-190
[3]  
de Castro LeandroN., 2002, ARTIFICIAL IMMUNE SY
[4]  
Deb K., 2000, Parallel Problem Solving from Nature PPSN VI. 6th International Conference. Proceedings (Lecture Notes in Computer Science Vol.1917), P849
[5]  
FORREST S, 1991, GENETIC ALGORITHMS I
[6]  
Holland J., 1962, J ASS COMPUTING MACH, V3
[7]  
Knowles JD, 2000, IEEE C EVOL COMPUTAT, P325, DOI 10.1109/CEC.2000.870313
[8]  
Schott, 1995, THESIS MIT
[9]  
SMITH RE, 1993, FOUNDATIONS OF GENETIC ALGORITHMS 2, P153
[10]  
Tavakkoli-Moghaddam R, 2007, INT J ADV MANUF TECH, V36, P969