Interpretation of Brain Morphology in Association to Alzheimer's Disease Dementia Classification Using Graph Convolutional Networks on Triangulated Meshes

被引:7
作者
Azcona, Emanuel A. [1 ,4 ]
Besson, Pierre [2 ,4 ]
Wu, Yunan [1 ,4 ]
Punjabi, Arjun [1 ,4 ]
Martersteck, Adam [3 ,4 ]
Dravid, Amil [1 ,4 ]
Parrish, Todd B. [3 ,4 ]
Bandt, S. Kathleen [2 ,4 ]
Katsaggelos, Aggelos K. [1 ,4 ]
机构
[1] Northwestern Univ, Dept Elect & Comp Engn, Image & Video Proc Lab, Evanston, IL USA
[2] Northwestern Mem Hosp, Adv NeuroImaging & Surg Epilepsy ANISE Lab, Chicago, IL USA
[3] Northwestern Univ, Dept Radiol, Neuroimaging Lab, Evanston, IL USA
[4] Northwestern Univ, Augmented Intelligence Med Imaging, Evanston, IL USA
来源
SHAPE IN MEDICAL IMAGING, SHAPEMI 2020 | 2020年 / 12474卷
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Graph convolutional networks; Alzheimer's disease classification; Triangulated meshes; Neural network interpretability; MILD; PREDICTION;
D O I
10.1007/978-3-030-61056-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a mesh-based technique to aid in the classification of Alzheimer's disease dementia (ADD) using mesh representations of the cortex and subcortical structures. Deep learning methods for classification tasks that utilize structural neuroimaging often require extensive learning parameters to optimize. Frequently, these approaches for automated medical diagnosis also lack visual interpretability for areas in the brain involved in making a diagnosis. This work: (a) analyzes brain shape using surface information of the cortex and subcortical structures, (b) proposes a residual learning framework for state-of-the-art graph convolutional networks which offer a significant reduction in learnable parameters, and (c) offers visual interpretability of the network via class-specific gradient information that localizes important regions of interest in our inputs. With our proposed method leveraging the use of cortical and subcortical surface information, we outperform other machine learning methods with a 96.35% testing accuracy for the ADD vs. healthy control problem. We confirm the validity of our model by observing its performance in a 25-trial Monte Carlo cross-validation. The generated visualization maps in our study show correspondences with current knowledge regarding the structural localization of pathological changes in the brain associated to dementia of the Alzheimer's type.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 38 条
[1]  
Arfken GB., 2012, Mathematical Methods for Physicists: A Comprehensive Guide, V7
[2]   Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm [J].
Beheshti, Iman ;
Demirel, Hasan ;
Matsuda, Hiroshi .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 83 :109-119
[3]   Intra-subject reliability of the high-resolution whole-brain structural connectome [J].
Besson, Pierre ;
Lopes, Renaud ;
Leclerc, Xavier ;
Derambure, Philippe ;
Tyvaert, Louise .
NEUROIMAGE, 2014, 102 :283-293
[4]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[5]  
Bruyn G, 1991, ATLAS CEREBRAL SULCI, V93
[6]   Strongly reduced volumes of putamen and thalamus in Alzheimers disease: an MRI study [J].
de Jong, L. W. ;
van der Hiele, K. ;
Veer, I. M. ;
Houwing, J. J. ;
Westendorp, R. G. J. ;
Bollen, E. L. E. M. ;
de Bruin, P. W. ;
Middelkoop, H. A. M. ;
van Buchem, M. A. ;
van der Grond, J. .
BRAIN, 2008, 131 :3277-3285
[7]  
Defferrard M, 2016, ADV NEUR IN, V29
[8]   Grey-Matter Atrophy in Alzheimer's Disease is Asymmetric but not Lateralized [J].
Derflinger, Sabine ;
Sorg, Christian ;
Gaser, Christian ;
Myers, Nicholas ;
Arsic, Milan ;
Kurz, Alexander ;
Zimmer, Claus ;
Wohlschlaeger, Afra ;
Muehlau, Mark .
JOURNAL OF ALZHEIMERS DISEASE, 2011, 25 (02) :347-357
[9]   The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals [J].
Dickerson, Bradford C. ;
Bakkour, Akram ;
Salat, David H. ;
Feczko, Eric ;
Pacheco, Jenni ;
Greve, Douglas N. ;
Grodstein, Fran ;
Wright, Christopher I. ;
Blacker, Deborah ;
Rosas, H. Diana ;
Sperling, Reisa A. ;
Atri, Alireza ;
Growdon, John H. ;
Hyman, Bradley T. ;
Morris, John C. ;
Fischl, Bruce ;
Buckner, Randy L. .
CEREBRAL CORTEX, 2009, 19 (03) :497-510
[10]  
Fischl B, 1999, HUM BRAIN MAPP, V8, P272, DOI 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO