Growth of MoS2 nanosheets on M@N-doped carbon particles (M = Co, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction

被引:79
|
作者
Shah, Sayyar Ali [1 ]
Xu, Li [1 ]
Sayyar, Rani [1 ]
Bian, Ting [1 ]
Liu, Zeyu [1 ]
Yuan, Aihua [1 ]
Shen, Xiaoping [2 ]
Khan, Iltaf [3 ]
Tahir, Asif Ali [3 ]
Ullah, Habib [4 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Harbin 150080, Peoples R China
[4] Univ Exeter, Environm & Sustainabil Inst, Penryn Campus, Penryn TR10 9FE, Cornwall, England
关键词
Electrocatalyst; Hydrogen evolution reaction; Molybdenum disulfide; N-doped carbon encapsulated metal particles; Density functional theory; ACTIVE EDGE SITES; HYBRID CATALYSTS; CHARGE-TRANSFER; PHOSPHIDE; GENERATION; CLOTH;
D O I
10.1016/j.cej.2021.132126
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The design and synthesis of a highly active noble metal-free electrocatalyst for hydrogen evolution reaction (HER) from water splitting are crucial for renewable energy technologies. Herein, we report the growth of molybdenum disulfide (MoS2) on N-doped carbon encapsulated metal particles (M@NDC@MoS2, where M = Co, Fe or CoFe alloy) as a highly active electrocatalyst for HER. The hierarchical MoS2 nanosheets are grown on M@NDC using the hydrothermal method. Our results show that CoFe@NDC@MoS2 hybrid spheres exhibit excellent HER performance with an overpotential of 64 mV at a current density of 10 mA cm-2 and a small Tafel slope of 45 mV dec-1. In addition, CoFe@NDC@MoS2 hybrid spheres have good long-term stability and durability in acidic conditions. Besides, density functional theory (DFT) simulations of the proposed catalysts are performed and suggest that the superior catalytic activity of CoFe@NDC@MoS2 is due to the optimal electron transfer from CoFe@NDC nanoparticles to MoS2 nanosheets. This electron transfer facilitates H+ interaction and adsorption, leading to a decreased Gibbs free energy (Delta GH* approximate to 0.08 eV) and local work function on the surface, which consequently enhances the HER performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction
    Wang, Meng
    Jian, Kailiang
    Lv, Zepeng
    Li, Dong
    Fan, Gangqiang
    Zhang, Run
    Dang, Jie
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 79 : 29 - 34
  • [32] Advanced Ultrathin RuPdM (M = Ni, Co, Fe) Nanosheets Electrocatalyst Boosts Hydrogen Evolution
    Zhang, Dan
    Zhao, Huan
    Huang, Bolong
    Li, Bin
    Li, Hongdong
    Han, Yi
    Wang, Zuochao
    Wu, Xueke
    Pan, Yue
    Sun, Yingjun
    Sun, Xuemei
    Lai, Jianping
    Wang, Lei
    ACS CENTRAL SCIENCE, 2019, 5 (12) : 1991 - 1997
  • [33] A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam
    Guo, Xin
    Cao, Guo-lin
    Ding, Fei
    Li, Xinyuan
    Zhen, Shuyu
    Xue, Yi-fei
    Yan, Yi-ming
    Liu, Ting
    Sun, Ke-ning
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) : 5041 - 5046
  • [34] MoS2 nanosheets direct supported on reduced graphene oxide: An advanced electrocatalyst for hydrogen evolution reaction
    Cao, Jiamu
    Zhou, Jing
    Zhang, Yufeng
    Zou, Yuezhang
    Liu, Xiaowei
    PLOS ONE, 2017, 12 (05):
  • [35] Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction
    Nikam, Revannath Dnyandeo
    Lu, Ang-Yu
    Sonawane, Poonarn Ashok
    Kumar, U. Rajesh
    Yadav, Kanchan
    Li, Lain-Jong
    Chen, Yit-Tsong
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) : 23328 - 23335
  • [36] Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C,P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction
    Xu, Yao
    Qu, Jiangtao
    Li, Ying
    Zhu, Mingyuan
    Liu, Yang
    Zheng, Rongkun
    Cairney, Julie M.
    Li, Wenxian
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 25
  • [37] Ni diffusion in vertical growth of MoS2 nanosheets on carbon nanotubes towards highly efficient hydrogen evolution
    Zhang, Xiao
    Yang, Ping
    Jiang, San Ping
    CARBON, 2021, 175 : 176 - 186
  • [38] N-enriched porous carbon doped with co, ni, and Mo as efficient electrocatalyst for hydrogen evolution reaction
    Yang, Xiaobing
    Yang, Weisen
    Fu, Xingping
    Hu, Jiapeng
    Chen, Juan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (35) : 18318 - 18325
  • [39] Co Nanoparticles Encapsulated in Porous N-Doped Carbon Nanofibers as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Zhang, Lulu
    Zhu, Shangqian
    Dong, Shuyu
    Woo, Nam Jae
    Xu, Zhenglong
    Huang, Jiaqiang
    Kim, Jang-Kyo
    Shao, Minhua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (15) : J3271 - J3275
  • [40] Formation of Ni-doped MoS2 nanosheets on N-doped carbon nanotubes towards superior hydrogen evolution
    Dong, Tao
    Zhang, Xiao
    Wang, Peng
    Chen, Hsueh-Shih
    Yang, Ping
    ELECTROCHIMICA ACTA, 2020, 338