Growth of MoS2 nanosheets on M@N-doped carbon particles (M = Co, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction

被引:79
|
作者
Shah, Sayyar Ali [1 ]
Xu, Li [1 ]
Sayyar, Rani [1 ]
Bian, Ting [1 ]
Liu, Zeyu [1 ]
Yuan, Aihua [1 ]
Shen, Xiaoping [2 ]
Khan, Iltaf [3 ]
Tahir, Asif Ali [3 ]
Ullah, Habib [4 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Harbin 150080, Peoples R China
[4] Univ Exeter, Environm & Sustainabil Inst, Penryn Campus, Penryn TR10 9FE, Cornwall, England
关键词
Electrocatalyst; Hydrogen evolution reaction; Molybdenum disulfide; N-doped carbon encapsulated metal particles; Density functional theory; ACTIVE EDGE SITES; HYBRID CATALYSTS; CHARGE-TRANSFER; PHOSPHIDE; GENERATION; CLOTH;
D O I
10.1016/j.cej.2021.132126
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The design and synthesis of a highly active noble metal-free electrocatalyst for hydrogen evolution reaction (HER) from water splitting are crucial for renewable energy technologies. Herein, we report the growth of molybdenum disulfide (MoS2) on N-doped carbon encapsulated metal particles (M@NDC@MoS2, where M = Co, Fe or CoFe alloy) as a highly active electrocatalyst for HER. The hierarchical MoS2 nanosheets are grown on M@NDC using the hydrothermal method. Our results show that CoFe@NDC@MoS2 hybrid spheres exhibit excellent HER performance with an overpotential of 64 mV at a current density of 10 mA cm-2 and a small Tafel slope of 45 mV dec-1. In addition, CoFe@NDC@MoS2 hybrid spheres have good long-term stability and durability in acidic conditions. Besides, density functional theory (DFT) simulations of the proposed catalysts are performed and suggest that the superior catalytic activity of CoFe@NDC@MoS2 is due to the optimal electron transfer from CoFe@NDC nanoparticles to MoS2 nanosheets. This electron transfer facilitates H+ interaction and adsorption, leading to a decreased Gibbs free energy (Delta GH* approximate to 0.08 eV) and local work function on the surface, which consequently enhances the HER performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] MoS2 nanosheets grown homogeneously on hollow carbon spheres for efficient hydrogen evolution reaction and supercapacitor
    Liu, Chenchen
    Yang, Ping
    Zhang, Xiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 97 : 1348 - 1356
  • [22] MoS2 Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction
    Li, Wenyue
    Zhang, Zhenyu
    Zhang, Wenjun
    Zou, Shouzhong
    ACS OMEGA, 2017, 2 (08): : 5087 - 5094
  • [23] MoS2 nanosheets grown vertically on N-doped carbon nanotubes embedded CoP nanoparticles for efficient hydrogen evolution
    Wang, Tao
    Jia, Changchao
    Wang, Bo
    Yang, Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 813
  • [24] Co doped MoS2 as Bifunctional Electrocatalyst for Hydrogen Evolution and Oxygen Reduction Reactions
    Wang, Congrong
    Wang, Shun
    Lv, Jianguo
    Ma, Yuxuan
    Wang, Yongqi
    Zhou, Gaoliang
    Chen, Mingsheng
    Zhao, Min
    Chen, Xiaoshuang
    Yang, Lei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9805 - 9814
  • [25] MoS2/CoS2 heterostructures embedded in N-doped carbon nanosheets towards enhanced hydrogen evolution reaction
    Ji, Kang
    Matras-Postolek, Katarzyna
    Shi, Ruixia
    Chen, Ling
    Che, Quande
    Wang, Junpeng
    Yue, Yunlong
    Yang, Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 891
  • [26] Acid-engineered defective MoS2 as an efficient electrocatalyst for hydrogen evolution reaction
    Zhang, Wei
    Xie, Zhiyong
    Wu, Xiaobo
    Sun, Min
    Deng, Xiaoting
    Liu, Chunbo
    Liu, Zhijian
    Huang, Qizhong
    MATERIALS LETTERS, 2018, 230 : 232 - 235
  • [27] Beneficial surface defect engineering of MoS2 electrocatalyst for efficient hydrogen evolution reaction
    Badiger, Jyoti Ganapati
    Arunachalam, Maheswari
    Kanase, Rohini Subhash
    Sayed, Suzan Abdelfattah
    Ahn, Kwang-Soon
    Kang, Soon Hyung
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 976
  • [28] Synthesis of Ni,Co-doped MoS2 as Electrocatalyst for Oxygen Evolution Reaction
    Sultan, Muhammad Sumair
    Uddin, Waqar
    Hamza, Salma
    Alanazi, Abdullah K.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (12):
  • [29] N, P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction
    Chi, Jing-Qi
    Gao, Wen-Kun
    Lin, Jia-Hui
    Dong, Bin
    Yan, Kai-Li
    Qin, Jun-Feng
    Liu, Bin
    Chai, Yong-Ming
    Liu, Chen-Guang
    CATALYSIS TODAY, 2019, 330 : 259 - 267
  • [30] MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction
    Meng Wang
    Kailiang Jian
    Zepeng Lv
    Dong Li
    Gangqiang Fan
    Run Zhang
    Jie Dang
    JournalofMaterialsScience&Technology, 2021, 79 (20) : 29 - 34